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Theme: Mirror Symmetry and its Origins in
String Theory

• Polchinski, String Theory (two volumes)

• Morrison, hep-th/9512016

My theme is mirror symmetry and its origins in string theory.
In non-perturbative string theory, mirror symmetry is a
proposed equivalence between the compactification of two of
the string theories (type IIA and type IIB) on different
Calabi-Yau threefolds, called a mirror pair. This equivalence
implies that the open-string sectors of these theories (which
only exist non-perturbatively) are also equivalent: i.e., there
is an equivalence of D-brane state spaces.
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Mirror symmetry

Loosely speaking, mirror symmetry for Calabi–Yau threefolds
is the assertion that Calabi–Yau threefolds come in mirror
pairs (X ,Y ), with isomorphisms between their parameter
spaces which reverse the rôles of algebro-geometric moduli
and complexified Kähler cones. More generally, the mirror
relationship is supposed to induce isomorphisms between
various physical theories associated to the pair:

I string theories of types IIA and IIB compactified on the
two members of the pair, and

I 2D conformal field theories with “N = (2, 2)
supersymmetry”,

I the spectra of BPS D-branes on those string theories.

(This last one is closely related to Kontsevich’s Homological
Mirror Symmetry conjecture.)
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Mirror symmetry

The loose statement of mirror symmetry which we gave on
the previous slide is incorrect: the complexified Kähler cone
of Y can at best give a small neighborhood within the
moduli space of X .

It fact, it was realized within the first few years of studying
mirror symmetry that accurately identifying a mirror pair
involved finding an appropriate boundary point in the
compatified moduli space of X , a neighborhood of which
would be the complexified Kähler cone of Y .

To understand the statements of these various physical
equivalences, we need at least a rudimentary understanding
of the terminology.
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Non-perturbative string theory

I Relativistic classical physical theories are described in
terms of fields propagating in spacetime, transofrming
in representations of the Poincaré algebra. Restricting
to the Lorentz algebra, fields whose associated
representation does not lift from the Lorentz group to
its double cover (the indefinte Spin group) are known as
fermions, and have markedly different physical
properties than the bosons which transform in more
familiar representations of the indefinite orthogonal
group. Bosons include: scalar fields (whose spacetime
representation is trivial) such as the “Higgs field,”
gauge fields transforming as 1-forms, gravitational fields
transforming as symmetric 2-tensors, and p-form fields
transforming in various antisymmetric powers of the
standard representation. The physics of each of these
types of field is well understood.
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Non-perturbative string theory

I Supersymmetric theories are invariant under a
Z/2Z-graded extension of the Poincaré algebra known
as a supersymmetry algebra. An odd transformation in
a supersymmetry algebra relates bosons and fermions,
so that irreducible representations of the supersymmetry
algebra necessarily involve both kinds of field. The
possible supersymmetry algebras were classfied by
Nahm in 1978 under the assumption that there is some
representation which only contains fields of standard
types (i.e., those known to have a physical
interpretation). Without gravity, supersymmetric
theories can exist in dimensions ≤ 6 while the theories
with gravitational fields, known as supergravity theories,
exist in dimensions ≤ 11. Most relevant to our
discussion today will be the ten-dimensional
supergravity theories.
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Non-perturbative string theory

I A (super)string theory is a ten-dimensional quantum
theory of gravity which is semi-classically approximated
by one of the ten-dimensional supergravity theories
equipped with quantization conditions for the p-form
fields.

I It is called a “string theory” because the so-called
NS-NS 2-form field has an associated string, the physics
of which encodes much of the information about the
string theory into a two-dimensional physical theory.

I It is called a “superstring” because the two-dimensional
theory also has supersymmetry. In addition, it has
conformal symmetry.

I There are five string theories, but only two are relevant
to our story: type IIA and type IIB.
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Non-perturbative string theory

I In type IIA string theory, the bosonic fields are a scalar
field known as the dilaton, the gravitational field, the
NS-NS 2-form, and the “R-R” 1-form and 3-form.

I In type IIB string theory, the bosonic fields are the
dilaton, the gravitational field, the NS-NS 2-form, and
the “R-R” 0-form, 2-form, and “self-dual” 4-form.

I Non-perturbatively, the type IIA and type IIB string
theories include “D-branes,” which are submanifolds on
which open strings can end, and which support a vector
bundle from which the open strings acquire a gauge
field at their endpoints. (Perturbatively, one doesn’t
notice the open strings in these theories, only the closed
strings.)

I To compactify a string theory means to study it on a
spacetime of the form X 10−d ×M1,d−1, where X is a
compact Riemannian manifold, and to try to express the
resulting theory in terms of physics on M1,d−1 alone.
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Non-perturbative string theory

I Preserving supersymmetry on the compactified theory
requires that X have a covariantly-constant spinor field.
Preserving supersymmetry on D-branes requires that
their supporting submanifolds are calibrated cycles.

I The parameters in a compactified theory are the values
of scalar fields in M1,d−1. In the type IIA and type IIB
cases, these are the dilaton, a (Ricci-flat) metric on X ,
a (harmonic) 2-form B ∈ H2(X ,R/Z), and harmonic
representatives of the other p-form fields.
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Calabi–Yau moduli space

A Calabi–Yau threefold is a Ricci-flat Kähler manifold
(X , gı̄) with Riemannian holonomy SU(3); physicists
typically equip Calabi–Yau threefolds with an extra
differential form B ∈ H2(X ,R/Z). Since the holonomy is
SU(3), there are no holomorphic 2-forms, so that H2(X ,C)
is purely of type (1, 1); this implies that Calabi–Yau
threefolds are algebraic varieties, i.e., algebraic threefolds
with trivial canonical bundle.) Moreover, the theorems of
Calabi and Yau tell us that for any algebraic threefold X
with trivial canonical bundle, and any Kähler class there is a
Ricci-flat Kähler metric in that class. It follows that the
natural parameter space for Calabi–Yau threefolds (of fixed
topological type, say) is the bundle of Kähler cones over the
familiar algebraic geometer’s moduli space.
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Calabi–Yau moduli space

Including the “B-field” gives a bundle of complexified Kähler
cones over the moduli space, which is sometimes called the
semiclassical moduli space of the Calabi–Yau threefolds.
(There are a few other technicalities in constructing this
space: one should mod out by the action of the
automorphism group of X on the complexified Kähler cone,
and a conjecture which I made back in 1992 would ensure
that this quotient is well-behaved.)

Calibrated cycles for boundary conditions come in two types:
algebraic cycles (for type IIB) and special Lagrangian cycles
(for type IIA).
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Type IIB String Theory

When type IIB string theory is compactified on a Calabi–Yau
threefold Y , the algebro-geometric moduli space of Y
becomes part of a larger semi-classical string theory moduli
space of Y , which includes not only the choice of complex
structure (the algebro-geometric modulus) but also a choice
of complexified Kähler form ω + iB ∈ H2(Y ,C)/H2(Y ,Z)
and a choice of what are called Ramond–Ramond fields,
which can be regarded as taking values in the dual of the
total Deligne cohomology group

⊕
H2n(Y ,Z(n)). More

precisely, the Ramond–Ramond fields involve a cycle class in
K-theory rather than the integer cohomology class which
was used to defined Deligne cohomology.

Note: the adjective “semi-classical” indicates that a
complete understanding of this moduli space in string theory
would involve “quantum corrections” to the given
description, but not all of those quantum corrections are
known in detail.
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Type IIB String Theory

One of the features of compactified type IIB string theory is
the rôle of “BPS D-branes”, which are physical objects that
span an effective algebraic cycle Z ⊂ Y as well as the
noncompact four-dimensional spacetime of the physical
theory, and also require the specification of a holomorphic
vector bundle supported on Z . (More generally, one can
consider coherent sheaves on Y with arbitrary support.)
The D-brane charge is the corresponding element of⊕

Hn,n
Z (Y ) (or its K-theory variant).
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Type IIB String Theory

Under mirror symmetry, the type IIB string theory
compactified on Y is supposed to produce the same physics
as the type IIA string theory compactified on the mirror
partner X . There can also be D-branes in the type IIA string
theory, but in this case they are represented by special
Lagrangian cycles L ⊂ X (again equipped with a bundle)
rather than by algebraic cycles.

The mathematical technology currently available to study
special Lagrangian cycles is much more limited than that
available to study algebraic cycles. However, there is one
construction, due to Bryant, which produces a special
Lagrangian cycles on a large number of Calabi–Yau
threefolds X : if the threefold X is defined over R, then any
connected component of its locus of real points gives a
special Lagrangian cycle L.
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Variation 1: Mirror Symmetry in Perturbative
String Theory

• Green, Schwarz, Witten, Superstring theory (two volumes)

• Candelas, de la Ossa, Green, Parkes, Nucl. Phys. B 359

(1991) 21-74

• Morrison, Walcher, arXiv:0709.4028

Variation one (perturbative mirrror symmetry): in
perturbative string theory, we find an equivalence between
two-dimensional conformal field theories, and boundary
conditions must also coincide.
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Perturbative string theory

The original approach to string theory was in terms of the
physics on the so-called “worldsheet” of the string, studying
this theory perturbatively in terms of a parameter known as
α′. The terms in the perturbative expansion correspond to
evaluting the theory on worldsheets of various genus.
The perturbative expansion is completely insensitive to the
RR fields in spacetime, so those are ignored: the key
(bosonic) ingredients for perturbative string theory are the
dilaton, the gravitational field, and the B-field.

For theories involving open strings as well as closed strings,
it should be possible to specify boundary conditions for
these theories, which say what happens at the endpoints of
the string.
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Nonlinear sigma models

If X is a space on which a string theory is compactified, the
two-dimensional physical theory living on the string can be
well-approximated by a “nonlinear sigma model,” which is a
physical theory on the worldsheet Σ of the string whose
scalar fields are maps from Σ to X . Such a theory is specified
by an action or a Lagrangian, and the key ingredients of the
action are a dilaton, a metric and a B-field on X .
The two-dimensional theories describing string theories
should be conformally invariant, and (in the genus-one
approximation) this implies that the dilaton is constant, the
metric is Ricci-flat and the B-field is harmonic.

(Boundary conditions, in principle, involve calibrated cycles
on the target space and vector bundles supported on them.)



Mirror symmetry:
Theme and
Variations

David R. Morrison

Theme

Mirror symmetry

Calabi–Yau moduli
space

Type IIB String
Theory

Variation 1

Perturbative string
theory

Nonlinear sigma
models

The Quintic and
its Mirror

Disk Counting

Variation 2

Gauged Linear
Sigma Models

The Two-Sphere
Partition Function

Nonlinear sigma models

Quantities in such a theory can be expressed as a series with
a classical contribution (involving maps Σ→ X whose image
is contractible) and quantum contributions, which are
nontrivial maps Σ→ X with Σ of fixed genus. Even when
the genus is fixed, there is a series to sum: one should sum
over the possible homology classes of the image.

As you may know from an earlier study of physics, the
physics is dominated by maps of least action. In the current
context, those maps turn out to be holomorphic maps.
(More generally, if we only specify a symplectic structure on
X we find pseudo-holomorphic maps.)
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Nonlinear sigma models
The theories associated to Calabi–Yau threefolds have a lot
of structure, stemming from their supersymmetry. There are
“operators” in these theories associated to both the
first-order deformations of complex structure, and to
complexified Kähler classes (which can be thought of as
first-order deformations of complexified Kähler structure). In
addition, there are “correlation functions” associated to sets
of such operators.

When evaluted on worldsheets of genus zero, the correlation
function of three complex structure operators has no
contributions from holomorphic maps: they are given by
their “classical value”. However, the correlation functions of
three complexified Kähler operators have an interesting
expansion receiving contributions from holomorphic rational
curves of each degree.

Equating these two leads to curve-counting predictions!
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The Quintic and its Mirror

I quintic: X = {F5(x1, . . . , x5) = 0} ⊂ CP4

I “complexified Kähler moduli space:” t ∈ H2(X ,C) with
Im t a Kähler class

I q = e2πit ∈ U ⊂ H2(X ,C/Z)

I quintic-mirror:
Y → Y = {1

5

∑
x5
j − ψ

∏
xj = 0}/(Z5)3 ⊂ CP4/(Z5)3

Known from Greene–Plesser analysis of representations
of the supersymmetry algebra of the 2D SCFT.

I algebro-geometric (“complex structure”) moduli space,
with parameter z = (−5ψ)−5

I the identification between the two is made with the help
of periods Φ(z) =

∫
Γ Ωz , for Γ ∈ H3(Y ,Z) and Ωz a

holomorphic 3-form on Yz
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The Quintic and its Mirror
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The Quintic and its Mirror
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The Quintic and its Mirror
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The Quintic and its Mirror
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The Quintic and its Mirror

I quintic: X = {F5(x1, . . . , x5) = 0} ⊂ CP4

I “complexified Kähler moduli space:” t ∈ H2(X ,C) with
Im t a Kähler class

I q = e2πit ∈ U ⊂ H2(X ,C/Z)

I quintic-mirror:
Y → Y = {1

5

∑
x5
j − ψ

∏
xj = 0}/(Z5)3 ⊂ CP4/(Z5)3

Known from Greene–Plesser analysis of representations
of the supersymmetry algebra of the 2D SCFT.

I algebro-geometric (“complex structure”) moduli space,
with parameter z = (−5ψ)−5

I the identification between the two is made with the help
of periods Φ(z) =

∫
Γ Ωz , for Γ ∈ H3(Y ,Z) and Ωz a

holomorphic 3-form on Yz



Mirror symmetry:
Theme and
Variations

David R. Morrison

Theme

Mirror symmetry

Calabi–Yau moduli
space

Type IIB String
Theory

Variation 1

Perturbative string
theory

Nonlinear sigma
models

The Quintic and
its Mirror

Disk Counting

Variation 2

Gauged Linear
Sigma Models

The Two-Sphere
Partition Function

The Quintic and its Mirror

Explicitly,

Ωz = Res

(∑
j(−1)j−1xjdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dx5

1
5

∑
x5
j − ψ

∏
xj

)

-5

z = 0

z = 8

z = - 5
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Periods and the Mirror Map

By differentiating under the integral sign, we can see that
Φ(z) satisfies an algebraic differential equation DΦ = 0,
where, for an appropriate choice of Ωz ,

D =

(
z

d

dz

)4

− 5z

(
5z

d

dz
+ 1

)(
5z

d

dz
+ 2

)(
5z

d

dz
+ 3

)(
5z

d

dz
+ 4

)
It is easy to find a single power series solution near z = 0:

Φ0(z) =
∞∑
n=0

(5n)!

(n!)5
zn

but the other three solutions are elusive.
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Periods and the Mirror Map

The recursion relations implied by the equation lead one to a
formal power series of the form

Φ(z , α) =
∞∑
n=0

(5α + 1)(5α + 2) · · · (5α + 5n)

[(α + 1)(α + 2) · · · (α + n)]5
zα+n ;

one finds that D(Φ(z , α)) = α4zα and so we must have
α4 = 0 in order to obtain a solution. In fact, the formal
solution can be interpreted with α taken from the ring
C[α]/(α4) as follows: each coefficient

(5α + 1)(5α + 2) · · · (5α + 5n)

[(α + 1)(α + 2) · · · (α + n)]5

can be evaluated in that ring, and written as a polynomial in
α of degree 3; moreover, zα can be expanded as
1 + α ln z + 1

2α
2(ln z)2 + 1

6α
3(ln z)3.
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The coefficients of 1, α, α2, and α3 in the resulting
expression give four linearly independent multi-valued
solutions Φ0(z), Φ1(z), Φ2(z), and Φ3(z) with Φj(z)
containing (ln z)j and lower powers. The mirror map is the
identification of the complexified Kähler moduli space of X
with the complex moduli space of Y via

t =
1

2πi

Φ1(z)

Φ0(z)
,

or
q = exp(Φ1(z)/Φ0(z)).
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A key aspect of the physics is captured by the so-called
topological correlation functions, among which is the
“three-point function,” a trilinear map on H1,1(X ,C), resp.

H1(Y ,T
(1,0)
Y ). On the quintic X , given

A,B,C ∈ H1,1(X ,C), the three-point function has an
expansion of the form

〈OAOBOC 〉 = A·B ·C +
∑

06=η∈H2(X ,Z)

A(η)B(η)C (η)Nη
zη

1− zη
,

where Nη counts the number of genus zero holomorphic
curves in the class η, and is closely related to the
Gromov–Witten invariant of X .
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On the mirror quintic Y , given α, β, γ ∈ H1(Y ,T
(1,0)
Y ), the

three-point function takes the form

〈OαOβOγ〉 =

∫
Y
∇α(Ω β) ∧ (Ω γ),

and this can be readily calculated from the periods.
Comparing the two yields the predictions of Candelas, de la
Ossa, Green and Parkes: the generic quintic threefold has
2875 lines, 609250 conics, 317206375 twisted cubics, and so
on.
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The original computation of Candelas, de la Ossa, Green,
and Parkes resulted in predictions for the number Nd of
rational curves of degree d on the generic quintic threefold:

d Nd

1 2875
2 609250
3 317206375
4 242467530000
5 229305888887625
6 248249742118022000
7 295091050570845659250
8 375632160937476603550000
9 503840510416985243645106250

10 704288164978454686113482249750
...

...
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Disk Counting

The story so far has been about closed string theory. But in
the presence of D-branes, it is now understood that open
strings also play a rôle. As mentioned above, a D-brane on
the quintic threefold will be a special Lagrangian
submanifold L of X , and open strings are expected to end on
such a submanifold. Instead of counting holomorphic curves
of fixed genus, the open string theory should count open
Riemann surfaces whose boundary lies on L (again, one
expects, of fixed genus).
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The specific special Lagrangian L which we use is the set of
real points of a quintic threefold defined over R. In, fact,
since there are many connected components of the moduli of
such real quintic threefolds (and many things about L,
including its topology, depend on the component), we
specialize further to the component containing the real
Fermat quintic:

X = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ CP4,

L = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ RP4.

This L is known to have the topology of RP3. Some of the
holomorphic curves of genus zero on X are defined over R;
others come in complex conjugate pairs. The ones defined
over R meet L and are divided by it into a pair of disks: it is
these disks which we wish to count.
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Just to preview the results, we will be able to do the count
only for curves of odd degree, and the answer will be: for
degree 1, there are 1430 complex conjugate pairs and 15
invariant curves, leading to 30 disks; for degree 3 there are
158602805 complex conjugate pairs and 765 invariant
curves, leading to 1530 disks; and so on.
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The background for doing open string theory requires one
additional piece of data, in addition to the special
Lagrangian submanifold L: it requires a U(1) bundle to be
specified on L, with flat connection. Since H1(L,Z) = Z2,
there are two choices for this data; we will use L+ and L− to
denote the special Lagrangian, equipped with such a choice.
The D-brane charges of L±, suitably defined, are the same,
and the difference L+ − L− is naturally associated to a
function T (t) which physically represents the domain wall
tension for a BPS domain wall separating vacua
corresponding to L+ and L− boundary conditions. (The
“BPS” condition means that the function is given by the
same kind of pairing with Ramond–Ramond fields which we
discussed in the type IIB context.)
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On the other hand, this tension can be computed as a sum
of a semi-classical term together with disk instanton
corrections, which leads to an expression of the form

T (t) =
t

2
±

(
1

4
+

1

2π2

∑
d odd

ndqd/2

)
,

where q = e2πit and nd are the open Gromov–Witten
invariants counting disks of degree d .
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Open Mirror Symmetry

To explain the physics reasoning which leads to the
identification of the mirror of L+ − L− (an algebraic cycle on
the mirror manifold Y ) would take me too far afield today.
Suffice it to say that Walcher and I identified this mirror
cycle in the following geometric form. If we restrict the
equation of Y to the plane P := {x1 + x2 = x3 + x4 = 0}, we
find
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1

5
x5

5 − ψx2
1 x2

2 x5 =
1

5
x5

(
x2

5 −
√

5ψx1x2

)(
x2

5 +
√

5ψx1x2

)
.

2

x 5

-Z

p

+Z

p
1

=0

We then define

Z± = P ∩ {x2
5 ±

√
5ψx1x2 = 0},
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and claim that the mirror of L+ − L− is Z+ − Z−, where Z±
is the pullback of Z± to a resolution of singularities of Y .

-

+

D 1

(-2)
D 2

(-2)

D 1

(-3)
D 2

(-3)

x 5 =0

Z

Z
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Our remaining task is to evaluate

T̂ (z) :=

∫
Γ

Ωz ,

where ∂Γ = Z+ − Z−. The strategy is to apply the
differential operator D to the integral. The result will not
vanish, but will rather lead to an inhomogeneous differential
equation for T̂ (z).

(The fact that this kind of Abel–Jacobi integral will satisfy
an inhomogeneous version of the differential equation
satisfies by the periods themselves was observed by Griffiths
in the late 1970’s as he studied normal functions.)
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The computation was surprisingly difficult, and had to be
done on an explicit resolution of singularities Y of Y . In
particular, one had to use toric resolutions of singularities
with toric data given by diagrams such as:

J
J
J
J
J
J
J
J
J
J
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(This is in contrast to previous Hodge-theoretic calculations
for the quintic-mirror, which could always be done on the
singular space.)
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The result is

D(T̂ (z)) =
15

16π2

√
z .

The remaining steps of the computation are now
straightforward: a series solution T̂ (z) to the
inhomogeneous equation can be found, and then

T (t) = T̂ (z)/Φ0(z)

can be calculated and converted into a series in the mirror
map parameter t. As expected, there is an ambiguity in this
calculation, provided by the solutions Φ to DΦ = 0, but the
answer is uniquely specified by insisting that the leading
terms agree with the form determined by the physics:

T (t) =
t

2
±

(
1

4
+

1

2π2

∑
d odd

ndqd/2

)
.



Mirror symmetry:
Theme and
Variations

David R. Morrison

Theme

Mirror symmetry

Calabi–Yau moduli
space

Type IIB String
Theory

Variation 1

Perturbative string
theory

Nonlinear sigma
models

The Quintic and
its Mirror

Disk Counting

Variation 2

Gauged Linear
Sigma Models

The Two-Sphere
Partition Function

Open Mirror Symmetry

Solving for the coefficients nd determines the numbers of
disks!

The analogue of the mirror theorems of Givental and
Lian–Liu–Yau in this case—the mathematical verification
that these disk numbers are correct—has been carried out by
Pandharipande, Solomon and Walcher. Moreover, analogues
of this computation have now been made for a number of
different one-parameter examples. However, multi-parameter
examples have so far resisted attempts at computation, so
there may well be additional aspects of this story which are
yet to be understood.
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Variation 2: Gauged Linear Sigma Models

• Witten, hep-th/9301042

• Batyrev, alg-geom/9310003

• Batyrev, Borisov, alg-geom/9402002

• Morrison, Plesser, hep-th/9508107

• Jockers, Kumar, Lapan, Morrison, Romo, arXiv:1208.6244

Variation two (GLSM): for a particular class of
two-dimensional field theories (“abelian gauged linear sigma
models”) the equivalence is quite explicit and closely related
to the combinatorial mirror symmetry discovered by Batyrev
and Batyrev-Borisov.
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Gauged linear sigma models are a class of 2D
supersymmetric quantum field theories which are expected
to “flow in the infrared” to conformal field theories. We
illustrate the basic construction with the case of the quintic
hypersurface, treating it quite mathematically at the outset.
The homogeneous polynomial f (x1, . . . , x5) can be regarded
either as describing a section of the line bundle O(−KP4), or
as defining a complex-valued function

W (x0, x1, . . . , x5) := x0f (x1, . . . , x5)

on the total space of the line bundle O(KP4) (with fiber
coordinate x0). In the latter interpretation, the Calabi–Yau
threefold coincides with the critical set Crit(W ) of the
function W . In fact, if the polynomial f is transverse, the
critical set away from the origin in C5 is defined by
x0 = f (x1, . . . , x5) = 0.
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(A similar construction leads from a complete intersection
f0 = · · · = fk−1 = 0 in a projective toric variety, with fj a
section of O(Lj), to the polynomial function
W = x0f0 + · · ·+ xx−1fk−1 on the total space of the bundle
O(−L0)⊕ · · · ⊕ O(−Lk−1). The critical set Crit(W ) again
coincides with the original complete intersection.)
The ambient space O(KP4) can itself be described by a
quotient construction. We again describe it using symplectic
reduction: there is an action of U(1) on C6 defined by

e iθ : (x0, x1, . . . , x5) 7→ (e−5iθx0, e
iθx1, . . . , e

iθx5)

which admits a moment map µ : C6 → g∗ ∼= R1 given by

µ(x0, x1, . . . , x5) =
1

2

(
− 5|x0|2 +

5∑
j=1

|xj |2
)
,

and O(KP4) = µ−1(r)/G for appropriate values of r . Note
that the polynomial function W : C6 → C is G -invariant.
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The general version of this construction goes as follows:
given a subgroup G of U(1)n, a point r ∈ g∗ in the image of
the moment map, and a G -invariant polynomial W defining
a function on Cn, we can study Crit(W ) on the quotient
variety µ−1(r)/G . If the polynomial W is given explicitly as

W (x0, . . . , xn−1) =
m−1∑
j=0

cj

n−1∏
k=0

x
pjk
k (*)

(with cj 6= 0), then the combinatorics in this construction
are essentially captured by the m × n matrix of exponents
P = (pjk). (We assume that W contains enough monomials
so that the rank of P is d := n− dim G .) The coefficients cj
are somewhat redundant: there is a group which acts on the
space of polynomials of the form (*), and we must form the
quotient by this group action. The true coordinates on the
complex structure moduli space are the invariant quantities
z` for this group action.
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The conditions which this data must satisfy are that the
monomials in W generate a Gorenstein cone, and that the
dual of this cone also be Gorenstein. In terms of the matrix
P, this means that there must exist rational vectors µ and ν
such that Pµ = t(1, . . . , 1), and tνP = (1, . . . , 1). It turns
out that these conditions imply that whenever Crit(W ) is a
manifold of dimension d − 2(tνPµ), it is a Calabi–Yau
manifold. Triangulations of the Gorenstein cone are needed
to construct a nonsingular Calabi–Yau manifold, and these
are indexed by the so-called “secondary fan.”
To encode the group G in the same combinatorial structure,
we introduce a basis x tα of G -invariant Laurent monomials
on Cn; then we can write

xpj =
d∏

α=1

(x tα)sjα

for each of the monomials occurring in W .
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This gives a factorization of P as the product of an m × d
matrix S and a d × n matrix T , with the group G being
completely determined by T . Changing the basis of Laurent
monomials alters (S ,T ) to (SL−1, LT ) for some
L ∈ GL(d ,Z).
The gauged linear sigma model is a physical theory built
from the group G and its action on the x ’s. It is expected
that at low energies, this theory will agree with (the
perturbative part of) type II string theory compactified on
the associated Calabi–Yau manifold.
There is a mirror partner of a gauged linear sigma model,
whose construction is essentially due to Batyrev and Borisov.
To describe the mirror partner, one merely replaces P, S ,
and T by their transposes. The dual group Ĝ is determined
from the (Ĝ -invariant) Laurent monomials whose exponents

form the matrix tS , and the dual polynomial Ŵ , which is a
Ĝ -invariant polynomial in m variables, can be written
explicitly as
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Ŵ (y0, . . . , ym−1) =
n−1∑
k=0

ĉk

m−1∏
j=0

y
pjk
j .

This mirror partner is somewhat mysterious, due to the new
parameters ĉk which must be introduced. However, the
original group G will act on those parameters (through its
action on the set of mirror polynomials), and the G -invariant
quantities are familiar ones. Explicitly, if we write the
moment map for the original G -action in the form
µ(x) = 1

2

∑n−1
k=1 χk |xk |2, where χk is the character for the

action of G on the kth variable, then the invariant quantities
for the G action on the coefficients of Ŵ can be described
as:

1

2πi

∑
(log ĉk)χk ∈ g∗C/g

∗
Z . (**)

(We have written the invariants additively, introducing a
logarithm, and they are thus multi-valued.)
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Mirror symmetry predicts that the imaginary part of this
invariant quantity (**) is to be identified with r , i.e.,

r =
−1

2π

∑
(log |ĉk |)χk .

(Similarly, the invariant combinations (log z`)/2πi of the
original coefficients cj can be identified with the
complexification of the Kähler parameters r̂` of the mirror
theory.)
This construction provides a global way to identify moduli
spaces, and to go beyond the small neighborhoods of large
complex structure limit points. The gauged linear sigma
model makes sense for arbitrary values of r , not just ones
near an appropriate boundary point, and the description of a
mirror theory shows that this realization could be a
geometric one on the mirror partner.
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In fact, an explicit (physics) computation can be made of the
locus where the theory becomes singular (aside from toric
boundary points like z = 0 and z =∞), and it reproduces
the structure of the discriminant locus of the mirror
polynomial, including all of its components. In the case of
the quintic, there is only one component, a polynomial with
a single zero, at z = −5−5. It should be stressed that this
computation is made purely from the point of view of the
quintic itself, without reference to the mirror theory.
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The quantum cohomology ring also corresponds as expected
from mirror symmetry. It can be precisely calculated in the
gauged linear sigma model on either side (in one case from
the data of the polynomial, in the other case from the toric
data, refined by analyzing the physics) and the results agree.
Relating this result to the enumerative predictions involves
determining an appropriate basis of cohomology (or in
physical terms, calculating the effect of renormalization), so
one cannot derive the Mirror Theorem directly in this way;
however, the proofs of the Mirror Theorem rely on similar
results at some step along the way.
Applying this entire set-up to the case of the general quintic,
we obtain a 6× 126 matrix; the mirror partner can be
determined from the transposed 126× 6 matrix. However,
the calculation of the geometry of the mirror would be
formidable from this point of view.
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An alternative is to begin with a quintic with fewer
monomials. If we start in P4 with the quintic defined by

1

5

∑
x5
j − ψ

∏
xj = 0

then the associated factored matrix is given by


1 1 1 1 1 1
1 5 0 0 0 0
1 0 5 0 0 0
1 0 0 5 0 0
1 0 0 0 5 0
1 0 0 0 0 5

 =


1 1 1 1 1
1 5 0 0 0
1 0 5 0 0
1 0 0 5 0
1 0 0 0 5
1 0 0 0 0




1 0 0 0 0 5
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

 .

(We can choose µ = (1, 0, 0, 0, 0, 0) and ν = (1, 0, 0, 0, 0, 0)
to obtain tνPµ = 1 and verify the conditions on the data.)
The group described by this factorization is G = U(1).
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Gauged Linear Sigma Models

To form the mirror, we take the transpose:


1 1 1 1 1 1
1 5 0 0 0 0
1 0 5 0 0 0
1 0 0 5 0 0
1 0 0 0 5 0
1 0 0 0 0 5

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
5 −1 −1 −1 −1




1 1 1 1 1 1
1 5 0 0 0 0
1 0 5 0 0 0
1 0 0 5 0 0
1 0 0 0 5 0

 .

This represents the same homogeneous polynomial as
before; however, this time the group is G = U(1)× (Z5)3

and so the Calabi–Yau is actually a hypersurface in a
quotient space P4/(Z5)3.
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The Two-Sphere Partition Function

There was recently a significant advance in our understand
of the physics of gauged linear sigma models: new
techniques were found for evaluating the partition function
of the theory for the case of a sphere, a torus, a hemisphere,
and a cylinder. I will focus on the case of the sphere.

The key formula is

Z (S2) = e−K ,

where K is the Kähler potential on the moduli space of the
theory.
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The Two-Sphere Partition Function

For the mirror variety, the exponentiated Kähler potential
has an expression of the form∫

X
Ωz ∧ Ωz ,

regarded as a (non-holomorphic) function of the moduli
coordinate z . This expression can be evaluated near a large
complex structure limit points in terms of periods, and it
turns out that the predicted Gromov–Witten invariants can
be extracted from the expression.

Thus, a physical argument is for the first time predicting
Gromov–Witten invariants directly from the “A-model.” We
used this to make predictions for Gromov–Witten invariants
in some “nonlinear” GLSMs, where those predictions were
previously unknown.
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