
GEOMETRY OF COMPLEX PROJECTIVE VARIETIES

ZHIYU TIAN

1. Introduction

This is a preliminary lecture note for the algebraic geometry course at the Second
International Undergraduate Mathematics Summer School held at Tokyo Univer-
sity, July 29-August 9, 2019.

It is of course impossible to teach algebraic geometry in five 90-minute lectures.
Thus this would not be what I will try to do. Indeed, the goal of these lecture notes
is to convey to the students a sense of what kind of objects/problems we study in
algebraic geometry.

Modern algebraic geometry requires the full machinery of Grothendieck: the
language of schemes, sheaf and cohomology, and so on. On the other hand, algebraic
geometry deals with polynomials, which are quite explicit. Quite often, explicit
computations illustrate the general machinery. So I choose to (and probably have
to) follow the low-tech approach and do things in an explicit way, giving hints to a
general theory, if possible.

In these lectures, I start with some classical examples of projective varieties, and
then whenever I introduce a new concept, I study this concept with these examples
in some details. Somewhat surprisingly, one can study these examples and prove
interesting theorems rigorously with a minimum amount of prerequisite (one the
level of what a good undergraduate student in his/her second or third year has
learned), and some hard work. It is my hope that through the course, the students
could get a rough idea of some of the basic ways of thinking about a problem in
algebraic geometry.

I assume the students are familiar with differentiable manifolds, vector bundles,
some basic topology and abstract algebra. But to really understand the lectures,
certain level of the mysterious “mathematical maturity” is absolutely essential. To
avoid technicalities (more precisely, to make the students feel that they are in their
comfort zone of differentiable manifolds), I will work over the complex numbers,
although for the most part, I did not use anything special about complex manifold.
I will try to make this course as self-contained as possible. But with Google and
Wikipedia (or similar websites), I think the students should be able to catch up if
there are some minor points that they have not encountered previously.

Some helpful references include: [Har95, Mum76, Rei88]. The book by Harris
contains lots of invaluable classical examples and exercises. The book of Reid has
the same flavor as this note ( I found out this book while preparing the lectures and
couldn’t agree more with the general philosophy in that book) and Chapter 8 is
good to read for students interested in going further. Finally it is always enjoyable
and enlightening to read a textbook by a master in the field, especially when the
author is a good writer like Mumford.
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This is only a preliminary version. Lots of details are left out, some of which
might be added later. A place to find the update (if it ever exists) is:

https://sites.google.com/view/zhiyutian/teaching/summer-2019.

2. Varieties

Definition 2.1. An affine space of dimension n is the vector space Cn. We denote
it by An. An affine algebraic set is the subset of An defined by the vanishing locus
of a set of polynomials fα ∈ C[X1, . . . , Xn].

Definition 2.2. The projective space of dimension n is the set of 1-dimensional
vectors of V = Cn+1. We denote it by Pn. Sometimes we use P(V ) to emphasize
that this comes from a vector space. A projective algebraic set is the vanishing
locus of homogeneous polynomials.

Example 2.3. Some examples and terminologies.

(1) Linear space.
(2) Hypersurface.
(3) Twisted cubic, rational normal curve.
(4) Nodal and cuspidal rational curve.
(5) Determinantal varieties Mk(n,m),P(Mk(n,m)). Twisted cubic as a deter-

minantal variety.
(6) Grassmannian. G(2, n), G(2, 4)

Example 2.4 (Veronese map).

vd : P(V )→ P(SymdV )

[X0, . . . , Xn] 7→ [Xd
0 , X

d−1
0 X1, X

d−1
0 X2 . . . , X

d
n]

The rational normal curves are the Veronese images of P1.

Example 2.5. The Veronese surface v2(P2) deserves a special mention.
The space Sym2V can be thought of as symmetric bilinear forms on V ∗. So each

element is same as a symmetric matrix. The elements of the form v ⊗ v, v ∈ V
are precisely the non-zero symmetric matrices of rank 1. Thus v2(P(V )) can be
described as a determinantal variety. In particular, v2(P2) can be described as

rk

X0 X1 X2

X1 X3 X4

X2 X4 X5

 ≤ 1

Example 2.6 (Segre map).

Pn × Pm → Pnm+n+m

([X0, . . . , Xn], [Y0, . . . , Ym]) 7→ [X0Y0, . . . , XiYj , . . . , XnYm]

This is also an example of determinantal varieties. The typical use of the Segre
embedding is to show that a product of projective varieties is projective.

Example 2.7.

P1 × P1 → P3

([X0, X1], [Y0, Y1]) 7→ [X0Y0, X0Y1, X1Y0, X1Y1]

The image is the quadric surface Z0Z3−Z1Z2 in P3. There are two families of lines
(rulings) coming from the two P1 factors.

https://sites.google.com/view/zhiyutian/teaching/summer-2019
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Exercise 2.8. Prove that given 3 disjoint lines in P3, there is a unique quadric
surface containing all three of them. Furthermore, they belong to one of the two
families.

Example 2.9 (Cone, join). Let X ⊂ Pn ⊂ Pn+1 be a projective variety and
v ∈ Pn+1 − Pn. The cone over X with vertex v is the subvariety

C(X) = ∪x∈Xxv,

where xv is the line containing x and v.
Let X,Y ⊂ Pn be two disjoint projective varieties. The join of X,Y is

C(X,Y ) = ∪x∈X,y∈Y xy.

How to prove these are algebraic varieties? One useful thing to keep in mind is
the following:

Principle 2.10. Algebraic constructions give algebraic objects.

Exercise 2.11. Prove that C(X) and C(X,Y ) are projective varieties by writing
down equations using defining equations of X,Y (and maybe some more). Hint:
first do the case of C(X). Then treat the case X,Y are in disjoint linear spaces.
Finally, C(X,Y ) may be reduced to the previous case.

2.1. Zariski topology.

Definition 2.12. Zariski topology on a variety: closed subsets are algebraic sub-
sets.

Example 2.13. Closed sets in A1 are either empty, finite sets or A1.

Exercise 2.14. (1) Check that this indeed defines a topology.
(2) Given an affine variety X ⊂ An, and a polynomial f ∈ C[x0, . . . , xn], define

the subset

Xf := {x ∈ X|f(x) 6= 0}.
Show that such sets form a basis for the Zariski topology. In fact, prove
that any open subset is a finite union of such opens. We call them basic
open subsets.

(3) Show that Xf is also affine.

Remark 2.15. An affine algebraic set is compact in the Zariski topology by the
above exercise. We say it is paracompact in algebraic geometry, probably because
we do not want to think of an affine variety as being “compact”. We need a different
notion for the real “compactness”.

Since we work over the complex numbers, one can also endow every algebraic sub-
set with the subspace topology of An or Pn. We will call this the classical/analytic
topology.

In the remaining of the notes, we will use Zariski topology unless otherwise
specified.

Definition 2.16. A topological space X is irreducible if X = X1 ∪ X2, X1, X2

closed subsets of X implies that X = X1 or X = X2.
An algebraic subset is an algebraic variety if it is irreducible (with respect to the

Zariski topology).
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Definition 2.17. Quasi-projective variety: open subset of a closed subvariety in
Pn.

When we say subvariety, we always mean a closed subvariety.
One important usage of Zariski topology is to define the following:

Definition 2.18. Given a variety X, we say a point x is general if it is outside a
Zariski closed subset of X (in each situation where we talk about a general point,
the subset should be specified. Usually we take it to be the subset whose points
satisfies some algebraic conditions).

Example 2.19. For example, we may say that there is a unique line passing
through two general points of Pn. This means that for a pair of points (x, y) ∈
Pn × Pn, outside a closed subset of Pn × Pn (exercise: which subset?), there is a
unique line passing through x and y.

2.2. Ideals, regular functions, morphisms. Let V ⊂ An be an affine algebraic
set. Define the ideal of V as

I(V ) = {f ∈ C[x0, . . . , xn]|f |V = 0}
The coordinate ring of V is C[x0, . . . , xn]/I(V ).

This is the ring of regular functions on V .
Let X ⊂ Pn be a projective algebraic set. Define the homogeneous ideal of X as

I(X) = {f ∈ C[x0, . . . , xn]|f |V = 0 and f is homogeneous}
The homogeneous coordinate ring of X is C[x0, . . . , xn]/I(X)

Theorem 2.20 (Hilbert Nullstellensatz).

I(V (I)) =
√
I.

where
√
I is the radical of I, i.e. f ∈

√
I if and only if fn ∈

√
I for some n.

Corollary 2.21.

V (I) ⊂ V (J)if and only if
√
J ⊂
√
I.

Corollary 2.22. There is a one-to-one, inclusion reversing, correspondence be-
tween

(1) {radical ideals} and { algebraic sets},
(2) {prime ideals} and {subvarieties}.

Corollary 2.23 (Weak Nullstellensatz). Maximal ideals in C[x1, . . . , xn] are of the
form (x1 − a1, . . . , xn − an).

Definition 2.24 (Open affine cover). Let Ui ⊂ Pn be the open subset Xi 6= 0.
Then Ui ∼= An. For a projective variety X, X ∩Ui is an affine variety. If F ∈ I(X),
then f = F (X0

Xi
, . . . , Xn

Xi
) ∈ I(X ∩ Ui)

This shows that a projective variety is glued from its affine open subvarieties.
There are many ways to construct affine open covers.

Exercise 2.25. Let Xd ⊂ Pn be a degree d hypersurface. Prove that U = Pn−Xd

is an affine variety. Prove that any open cover of a quasi-projective variety has a
refinement consisting of affine open covers.

Using the affine covers Ui, you can do the following.
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Exercise 2.26. Formulate a version of the Nullstellensatz for projective varieties.
Note that the ideal generated by all the Xi’s already defines the empty subset of
Pn.

Definition 2.27 (Morphism). A morphism between affine varieties f : V → U is
given by a C-algebra homomorphism C[U ] → C[V ]. A morphism between quasi-
projective is a map which is locally given by morphisms of affine varieties.

Example 2.28 (Projection from a linear space). Let X ⊂ Pn be a projective
variety, and let Λ ⊂ Pn be a linear subspace of dimension n−m− 1 disjoint from
X. Assume that Λ is defined by X0 = . . . = Xm = 0. There is a morphism
Pn −Λ→ Pm, [X0, . . . , Xn] 7→ [X0, . . . , Xm]. We can restrict this to X and get the
projection from Λ.

Exercise 2.29. Let C ⊂ P3 be a twisted cubic, and let x ∈ P3 be a point disjoint
from C. Show that the image of C under the projection from x is either a nodal or
a cuspidal plane cubic.

This might by difficult. If you cannot do the general case, try to work out some
special cases. Or instead, work on an easy problem: find a point such that the
projection is a nodal (resp. cuspidal) plane cubic.

Example 2.30 (Veronese map).

P(V )→ P(SymdV )

[X0, . . . , Xn] 7→ [Xd
0 , X

d−1
0 X1, X

d−1
0 X2 . . . , X

d
n]

The rational normal curves are the Veronese images of P1.

Example 2.31 (Segre map).

Pn × Pm → Pnm+n+m

([X0, . . . , Xn], [Y0, . . . , Ym]) 7→ [X0Y0, . . . , XiYj , . . . , XnYm]

The typical use of the Segre embedding is to show that a product of projective
varieties is projective.

Finally we record the following theorem, which will be used later.

Theorem 2.32 (Chevalley, [Har77, Chap 2, Ex. 3.19]). Let f : X → Y be a
morphism between varieties. Then the image of f is constructible, i.e. it is a finite
union of locally closed (=intersection of an open set with a closed set) subset of Y .

Example 2.33. f : A2 → A2, (x, y) 7→ (xy, y). The image is only constructible.

2.3. Products, Correspondences, Rational maps.

Definition 2.34. Let X,Y be affine varieties in An,Am defined by polynomials
Fi(x), Gj(y) . The product X × Y is defined as the closed subset in An+m defined
by Fi = Gj = 0.

Lemma 2.35. Let X,Y be irreducible topological spaces. Suppose that the topology
on X × Y is such that for any x ∈ X, y ∈ Y , the subspace topology on x × Y and
X×y is the same as that of X and Y . Then X×Y is irreducible with this topology.

Exercise 2.36. Prove that C[X × Y ] ∼= C[X] ⊗C C[Y ]. Check that this is the
product in the category of quasi-projective varieties, i.e. it satisfies the universal
property of a product.
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IMPORTANT: The Zariski topology on X ×Y is NOT the product topology.
The simplest example is to look at A1 × A1 ∼= A2.

Definition 2.37 (Product of projective varieties). Let X,Y be projective varieties
in Pn and Pm. Then X × Y ⊂ Pn × Pm ⊂ Pnm+n+m is a projective variety (see
below for justifications).

Lemma 2.38. An algebraic set in Pn×Pm is defined by Gα(X0, . . . , Xn, Y0, . . . , Ym) =
0 for polynomials homogeneous for Xi and homogeneous for Yj

Definition 2.39 (Product of quasi-projective varieties). This is easy, once we know
products of projective varieties is projective.

Lemma 2.35 gives

Corollary 2.40. The product of varieties is again a variety.

Exercise 2.41. Prove:

(1) Let X be a topological space. X is Hausdorff if and only if the diagonal
∆X ⊂ X ×X is closed, where X ×X is given the product topology.

(2) Let U ⊂ An be an affine algebraic set. The diagonal ∆U
∼= U ⊂ U × U is

closed, where U × U ⊂ A2n is given the Zariski topology.
(3) Let X be a quasi-projective variety. Then the diagonal ∆X ⊂ X × X is

closed, where X ×X is given the Zariski topology.
(4) Let U, V ⊂ An be affine algebraic sets. Then U∩V is also an affine algebraic

set.
(5) Let X be a quasi-projective variety. Let U, V ⊂ X be open affine subvari-

eties of X. Then U ∩ V is also an open affine subvariety of X.

With this exercise, we can define the ring of regular functions for any quasi-
projective varieties. Usually one defines this as the global sections of the structure
sheaf. Here we are essentially doing the same thing, using Čech covers, and without
mentioning anything sheaf theoretic.

We proceed in several steps.

Exercise 2.42. Let U be an affine algebraic set and Ui, 1 ≤ n be an open affine
cover of U . Then

C[U ] ∼= Ker(⊕ni=1C[Ui]→ ⊕1≤j 6=k≤nC[Uj ∩ Uk]),

where the map are the natural restriction maps

Exercise 2.43. Let X be a quasi-projective variety algebraic set and Ui, 1 ≤ n be
an open affine cover of X. Then

C[X] = Ker(⊕ni=1C[Ui]→ ⊕1≤j 6=k≤nC[Uj ∩ Uk])

is well-defined, which is the ring of regular functions on X.

Remark 2.44. Here the essential thing is that the intersection of two affine open
subsets is still affine, on which we understand how to define the ring of regular
functions. Clearly, the diagonal being closed is crucial for this approach. In scheme
theory terms, such property is called separated. For us, very thing is separated
since we only consider quasi-projective varieties (algebraic sets).

Exercise 2.45. Let X be a projective variety. Prove that C[X] ∼= C. This should
remind you the corresponding statement for holomorphic functions on compact
complex manifold.
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Proposition 2.46. Let X be a variety and Y be an affine variety.

Hom(X,Y ) = HomC−alg(C[Y ],C[X])

Definition 2.47. Let X,Y be quasi-projective varieties. A correspondence from
X to Y is a closed algebraic set Z of X × Y .

Example 2.48. Let f : X → Y be a morphism. The graph Γf gives a correspon-
dence in X × Y .

Example 2.49. Consider the universal lines U ⊂ G(2, V ) × P(V ), defined as the
set of pairs {(Λ.v) ∈ G(2, V )× P(V )|v ∈ Λ}. This is a correspondence.

Example 2.50.

{(A,Λ)|A : Cn → Cm, rankA ≤ k,Λ ⊂ kerA,dim Λ = n− k}

This is a correspondence in P(Mk(n,m))×G(n− k, n)

Definition 2.51. Let X,Y be varieties. A rational map between X,Y is the
equivalence class of morphisms f : U → Y , where U is a Zariski open subset of X.
The equivalence relation is

(f : U → Y ) ∼ (g : V → Y ) if and only if f = g : U ∩ V → Y.

We denote it by f : X 99K Y . Given a rational map f : X 99K Y , we define the
graph as the Zariski closure of Γf for some f : U → Y . This gives a correspondence
from X to Y .

Given two rational maps f : X 99K Y, g : Y 99K Z, if f is dominant, then we can
define the composite

g ◦ f : X 99K Z.

Example 2.52.

f : P2 → P2

[X,Y, Z] 7→ [
1

X
,

1

Y
,

1

Z
]

f ◦ f = id

Definition 2.53. A rational function on a variety X is a regular function defined
over some Zariski open subset. Equivalently, it is a rational map X 99K A1.

The function field of X is the field of rational functions on X.

2.4. GAGA principle. The projective space can be given the structure of a com-
plex manifold. For those who prefer a geometric setting, it is quite safe to think of
every variety that we will talk about in the notes as a complex manifold, except for
the morphisms between varieties. There is a big difference between holomorphic
and algebraic maps between non-projective manifolds. For example, think about
the exponential function ez and polynomials and the Picard theorem(s).

We recall the following Theorem of Chow, which is the first instance of the
so-called GAGA principle.

Theorem 2.54 (Chow). Let X ⊂ Pn be an analytic subset. Then X is algebraic,
i.e. X is the vanishing locus of some homogeneous polynomials. Any holomorphic
maps between projective manifolds is algebraic.
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Remark 2.55. So for complex projective manifolds, we could just say holomorphic
instead of algebraic in front of everything. If you are new to algebraic geometry
but are comfortable with holomorphic maps between complex manifolds, there is no
harm to think of everything as holomorphic, and it is the same thing when dealing
with projective varieties.

3. Basic properties

3.1. Dimension and degree.

Definition 3.1 (Dimension). Given a topological space X, we define its dimension
to be the supremum of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ . . . ⊂
Zn of distinct irreducible closed subsets of X. The dimension of a variety is the
dimension of the underlying topological space.

Example 3.2. dimAn = n, dimPm = m. Can you prove this in an elementary
way?

Example 3.3 (Dimension of a hypersurface). Let X be an affine algebraic set of
dimension n. f ∈ C[X]. Then V (f) ⊂ X has dimension at least n − 1 (Krull’s
hauptidealsatz).

Lemma 3.4. (1) dim(X × Y ) = dimX + dimY .
(2) Let X be a variety and U be an open subset of X. Then dimX = dimU >

dim(X − U).

Example 3.5 (Dimension of Grassmannian). dimG(r, n) = r(n− r).

Exercise 3.6. Determine the dimension of a generic determinantal varietyMk(n,m).

Chevalley’s theorem (Theorem 2.32) gives the following.

Lemma 3.7. Let f : X → Y be a morphism of varieties.

dim f(X) ≤ dimX.

If dimX < dimY , the image of f is contained in a proper subvariety of Y .

Example 3.8. Recall the space filling Peano’s curve. This lemma is a special
feature of algebraic maps.

Example 3.9 (Secant variety). The secant variety of X ⊂ Pn is

Sec(X) = {z ∈ Pn|z ∈ C(x, y), x 6= y}
We would like to study the dimension of Sec(X).

Consider the correspondence

{(x, y, z) ∈ (X ×X −∆X)× Pn|x 6= y, x, y, z are colinear}.
It has a natural projection to X × X, whose fiber has dimension 1 over the open
subset X ×X −∆X . Thus the dimension of the correspondence is 2 dimX + 1. It
follows that dim Sec(X), being the image under the third projection, has dimension
at most 2 dimX + 1.

Exercise 3.10. What is the secant variety of a twisted cubic?

Exercise 3.11. What is the secant variety of a Veronese surface in P5? Hint: It is
not P5. Thinking in terms of determinantal varieties is helpful. This is a classical
example where the inequality is strict.
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Exercise 3.12. Study the dimension of C(X,Y ) in a similar way as above. That
is, find the dimension bound, give examples so that the bound is achieved/not
achieved.

Theorem 3.13. Let f : X → Y be a morphism of algebraic varieties. Then the
function Y → Z, y 7→ dim f−1(y) is upper-semi-continuous. Equivalently, the set
{y ∈ Y |,dim f−1(y) ≥ d} is closed for any d.

Corollary 3.14. Let f : X → Y be a morphism of algebraic varieties. dimX =
dimY + dim f−1(y) for y in some non-empty Zariski open subset of Y .

Definition 3.15. The number dim f−1(y) in Corollary 3.14 is the generic fiber
dimension of f .

Next, we show how a simple dimension argument could be used to prove some
important results. We consider a homogeneous polynomial in n + 1 variables of
degree d with coefficients in C(t), F (X0, . . . , Xn) ∈ C(t)[X0, . . . , Xn].

Theorem 3.16 (Tsen-Lang). There is a non-trivial solution of F = 0 in C(t) if
d ≤ n.

In modern terms, this says that C(t) is a C1-field. A similar argument as below
shows that the function field of an algebraic curve over an algebraically closed is
C1. We refer the students to Google to find out the definitions and context, etc.
about the following corollary.

Corollary 3.17. The Brauer group of C(t) is trivial.

Proof of Theorem 3.16. After clearing the denominators, we may assume that the
coefficients of F are in C[t]. Then F = 0 defines a hypersurface X ⊂ A1 × Pn. A
non-trivial solution in C(t) is the same as a non-trivial solution in C[t], again by
clearing the denominators. Such solutions are in one-to-one correspondence with a
morphism A1 → X such that the composition

A1 → X ⊂ A1 × Pn → A1

is the identity. Such a morphism is called a section of π : X → A1. �

Exercise 3.18. Prove that a section f : A1 → X ⊂ At × Pn([X0, . . . , Xn]), Xi =
fi(t),deg fi ≤ e corresponds to a point in an algebraic set of A(e+1)(n+1) defined
by de+ 1 equations, except the origin (0, . . . , 0). Thus it has positive dimension (if
non-empty) as long as e is large and d ≤ n. Note that (0, . . . , 0) is always contained
in the algebraic set. Conclude the existence of a morphism f : A1 → X,Xi =
fi(t),deg fi ≤ e.

Exercise 3.19. Write down a homogeneous polynomial in n+1 variables of degree
n+ 1 with coefficients in C(t), F (X0, . . . , Xn) ∈ C(t)[X0, . . . , Xn], such that F = 0
has only the trivial solution in C(t).

The followings will be optional. We only discuss them if we have time.

Lemma 3.20 (Positivity of local intersection number).

Corollary 3.21.
X · Y ≥ |X ∩ Y |,

if the right hand side is finite.
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This positivity is special for algebraic geometry, in contrast to general cases in
topology.

Definition 3.22 (Degree of a projective variety).

Theorem 3.23 (Bézout Theorem).

3.2. Smoothness.

Definition 3.24 (Zariski tangent space). (1) Affine tangent space.
Let X ⊂ An be an affine variety and let f1, . . . , fm be a set of generators

of I(X). Given a point x ∈ X, the tangent space at x is defined to be the
affine subspace

TxX = {v ∈ TxAn ∼= Cn|
∑
j

∂fi
∂xj

(x)vj = 0, 1 ≤ i ≤ m}.

(2) Projective tangent space.
Let X ⊂ Pn be a projective variety and let F1, . . . , Fm be a set of homo-

geneous generators of I(X). Given a point x ∈ X, the projective tangent
space at x is defined to be the projective linear subspace

P(TxX) = {v ∈ P(TxPn) ∼= Pn−1|
∑
j

∂Fi
∂xj

(x)vj = 0, 1 ≤ i ≤ m}.

(3) Intrinsic tangent space.
The cotangent space at x ∈ X is defined to be the C-vector space m/m2,

where m is the maximal ideal of x in an affine neighborhood of x. The
tangent space at x is defined to be the dual of m/m2. For this to make
sense, we need to prove that this vector space is independent of the choice
of the affine neighborhood.

(4) Regular and singular points.
A point x ∈ X is a regular point if dimm/m2 = dimX. Otherwise it is

a singular point. A regular point is also called a smooth point.
(5) A variety is regular if every point is a regular point. Otherwise it is singular.

Remark 3.25. One can check that the abstract definition gives the tangent space
as a subspace of the tangent space of the affine space, as described in the affine
tangent space case.

Example 3.26 (Tangent space to Grassmaniann). TΛG ∼= Hom(Λ, V/Λ)

Example 3.27. Let X be a smooth projective variety. The projective cone C(X)
is singular at the vertex.

Example 3.28. Nodal and cuspidal singularities.

Example 3.29 (Plane curve singularities and knots). We discuss the appearance
of knots in the study of plane curve singularities.

Example 3.30 (tangent variety). Let X ⊂ Pn be a subvariety. By Theorem 3.32,
there is a Zariski open subset U consisting of regular points. Define the tangent
variety to X to be

Tan(X) = {z|z ∈ P(TxX), x ∈ U}

Exercise 3.31. (1) Tan(X) ⊂ Sec(X).



GEOMETRY OF COMPLEX PROJECTIVE VARIETIES 11

(2) dim Tan(X) ≤ 2 dimX.

Theorem 3.32. The set of regular points in a variety is non-empty, and Zariski
open.

Corollary 3.33. Let X be a smooth projective variety of dimension n. Then X
can be embedded into P2n+1.

Proof. Choose an embedding. Then project from a linear space away from Sec(X).
�

Remark 3.34. So there is nothing one can say about a smooth variety X in Pn if
Codim(X) > dim(X). On the other hand Codim(X) < dim(X), we expect X to
be special. Hartshorne made some conjectures.

Exercise 3.35. What is the tangent variety of a twisted cubic? How is this (and
the description of its secant variety) related to image of the projection from a point?

Example 3.36 (Dual hypersurface). Let X ⊂ P(V ) be a hypersurface. The dual
hypersurface is the Zariski closure of the map x ∈ U 7→ P(TxU) ∈ P(V ∗), where U
is the smooth locus of X.

For example, the dual hypersurface of a quadric hypersurface is again a quadric
hypersurface.

In general, the dual hypersurface is singular.

Next we discuss the relative notion of smoothness.

Definition 3.37. Let f : X → Y be a morphism between varieties and x, y = f(x)
be smooth points of X,Y . We say f is smooth at x if the induced map on tangent
spaces df : TxX → TyY is surjective.

Remark 3.38. This notion corresponds to the notion of submersion in differential
topology.

If f is smooth at x, then it is smooth in a neighborhood of x and the fiber
f−1(f(x)) is smooth in a neighborhood of x.

Theorem 3.39 (Generic smoothness=Sard’s theorem in the algebro-geometric set-
ting). Let f : X → Y be a morphism between varieties. Assume that X is smooth.
Then there is an open subset U ⊂ Y such that for any x ∈ f−1(U), f is smooth at

x. Furthermore, U is non-empty if Im(f) = Y .

Proof. We give a proof assuming Sard’s theorem on the density of regular points,
which says that the set of regular values in X is dense. On the other hand, one can
show that the set of points in X along which f is not smooth is a closed subvariety
W . By the theorem of Chevalley (Theorem 2.32), f(W ) is constructible. Putting
these two things together, we see that the Zariski closure of f(W ) is not the whole
Y . Take U to be the complement. �

Remark 3.40. This (and the following corollary) is the only result in these notes
that is not true over a general field. It is false in positive characteristic because of
morphisms like the Frobenius.

Theorem 3.41 (Bertini’s theorem, complex version). Let f : X → Pn(V ) be a
morphism from a smooth variety X. Then for a general linear space L, f−1(L) is
smooth.
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Proof. This proof uses the so-called correspondences, which is a very useful tech-
nique in algebraic geometry. Once the correct correspondence is set-up, it is an
application of the generic smoothness theorem. We leave it as an exercise. �

Theorem 3.42 (Bertini’s theorem, general version, true in any characteristic).
Let X ⊂ Pn(V ) be a smooth variety. Then for a general linear space L, L ∩X is
smooth.

Proof. Work out the dimension of the following space:

{(x,H) ∈ X × P(V ∗)|x ∈ H,X ∩H is singular at x},
by considering the first projection. Then consider the second projection to P(V ∗).
It suffices to show that the projection is not surjective. �

3.3. Properness.

Definition 3.43 (Proper variety). A morphism f : X → Y is proper if it is
universally closed. That is, for any variety S, the morphism S × X → S × Y
maps closed subsets to closed subsets. A quasi-projective variety X is proper if
X → point is proper.

Remark 3.44. This is also an exercise in basic topology: prove that for a compact
Hausdorff space X, the map from X to a point is universally closed.

Theorem 3.45. The projective space is proper.

This can be done using the elimination theory.

Corollary 3.46. Any projective variety is proper. Any morphism from a projective
variety to a variety is proper.

Proof. Show that a closed immersion is proper. And the composition of proper
morphisms is proper. �

Definition 3.47. Let X be a quasi-projective variety. A resolution of singularities
is a birational proper morphism f : Y → X.

Theorem 3.48 (Hironaka). Resolution of singularities exists over C.

Example 3.49 (Singularities of a determinantal variety).

Exercise 3.50. Resolution of singularities for determinantal varieties. Prove that
Example 2.50 gives a resolution of singularities. Can you construct another one by
a similar construction, but instead of looking at kernals, look at the images?

4. Parameter space and moduli

Lemma 4.1 (Yoneda’s Lemma). Let C be a category and F : Cop → (Sets) be a
(contravariant) functor. Then there is a canonical isomorphism

HomFun(hX , F ) ∼= F (X),

where Fun is the category of (contravariant) functors of C, X an object of C, and
hX is the functor

hX : Cop → (Sets), Y 7→ HomC(Y,X).

In particular,
HomFun(hX , hY ) ∼= HomC(X,Y ).
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Exercise 4.2. Prove this.

The proof is mostly tautological. But the implication of this lemma is concep-
tually important:

Corollary 4.3. The functor X 7→ hX is a fully faithful embedding.

Thus to define an object X in C, it suffices to specify the functor hX . We say
that a functor F is representable if it is isomorphic to hX for some object X, and
if this is the case, we also say that X represents the functor F (or F is represented
by X etc.).

Example 4.4. Consider the functor:

Pn : (Varieties)→(Sets),

X 7→ {X × Cn+1 → L, a surjective map of the trivial vector bundle

of rank n+ 1 to a line bundle L}.

This functor is represented the projective space Pn.

Exercise 4.5. (1) What is the functor represented by a Grassmannian, A1,
Gm?

(2) What is the natural transformation represented the Segre embedding Pn×
Pm → Pnm+n+m

Definition 4.6. Let us look at the first example: the universal hypersurface:

U ⊂ Pn × P(C[X0, . . . , Xn]d)

= {(x,Xd)|x ∈ Xd,where Xd is a hypersurface of degree d}

Here the parameter space is P(C[X0, . . . , Xn]d), the projective space associated to
vector space of degree d homogeneous polynomials.

Definition 4.7 (Universal conic). C ⊂ P2 × P5 defined by∑
aijkX

j
0X

j
1X

k
2 = 0

Exercise 4.8. Consider the second projection π : C → P5. Is there a section
σ : P5 → C(i.e. π ◦ σ = IdP5)? Is there a section σ : U → C|U if we restrict to a
Zariski open subset U?

Definition 4.9 (Fano variety(scheme) of lines). Let X ⊂ Pn be a projective variety.
The the Fano scheme/variety of lines on X is the scheme/variety F (X) which
represents the functor:

F (X) : (Varieties)→ (Sets)

S 7→ {L ⊂ Pn × S, is a family of lines.}

This is not very precise, since we have to say what does “a family of lines” mean,
but hopefully you get the idea.

Exercise 4.10. Show that the functor F (X) is a subfunctor of the functor repre-
sented by the Grassmaniann G(2, V ).
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Example 4.11. We provide a concrete description of the Fano scheme of lines
on a smooth quadric surface here. The Grassmannian G(2, 4) is embedded in P5

as a quadric hypersurface via the Plücker embedding. The two families of lines
corresponds to two conics. Maybe it is best to leave this as an exercise. One should
at least try to write down explicitly the equations and check that this is the case.

Exercise 4.12. One can think about this problem in a somewhat cheating way
(cf. Exercise 2.8). Choose three lines in one ruling of the quadric surface. Prove
that a line in P3 belongs to the other ruling of the quadric surface if and only if it
intersects all of the three lines. Also prove that the lines intersecting a fixed line is
the intersection of G(2, 4) with a hyperplane in P5.

Exercise 4.13. What is the number of lines in P3 that intersects 4 general lines?
What should general mean in this case?

Example 4.14 (Universal family of Fano varieties of lines on the universal hyper-
surface). Write down the universal family of lines on the universal hypersurface.

Exercise 4.15 (Realization as the zero locus of a section of a vector bundle when X
is a hypersurface). On the Grassmannian G(2, V ), there is a tautological rank two
vector bundle, which fits into the following short exact sequence of vector bundles
on G(2, V ):

0→ S → V → Q→ 0,

where V is the trivial vector bundle whose fiber over each point is the vector
space V , S is the subbundle whose fiber over each point is the corresponding 2-
dimensional sub-vector space, and Q is the quotient bundle. Show that each degree
d hypersurface Xd gives rise to a section of the vector bundle SymdS∗, and F (Xd)
(at least as a set) is the zero locus of the section.

Exercise 4.16. In this exercise, we study some basic properties of the Fano scheme.
Let Xd be a hypersurface of degree d in Pn.

(1) Show that if 2d− 3− n > 0, then F (Xd) is empty for Xd general.
(2) Let x ∈ Xd be a point. Prove that the parameter space of lines in Xd con-

taining x can be described as the common zero locus of some homogeneous
polynomials of degree 1, 2, 3, . . . , d in Pn−1 (some of these polynomials could
be 0). In particular, if d ≤ n−1, there there is a line passing through every
point of Xd, for every Xd. Hint: you need to write down the lines in Pn
passing through x and look for conditions that will force the line to be
contained in Xd.

(3) Show that if d ≥ n, then for a general Xd and a general point x ∈ Xd, there
is no line in Xd passing through x.

(4) If you feel energetic, prove that if 2d− 3− n ≤ 0, and X is general, F (Xd)
is smooth of dimension n − 2d + 3. If not, try to prove the following: one
can reduce this statement to the case 2d − 3 − n = 0. Then prove it for
n = d = 3.

All statements in this exercise remain true over any field. With what we have
learned so far, we can prove the last part over C, but it requires some hard work.

5. 27 lines and beyond

R. Donagi, R. Smith, The structure of the Prym map, P. 27:
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Wake an algebraic geometer in the dead of the night, whispering
“27”. Chances are, he will respond: “lines on a cubic surface”.

We will use what we have learned so far to prove the following theorem.

Theorem 5.1. Every smooth cubic surface contains 27 lines.

Lemma 5.2. Every smooth cubic hypersurface has the same number of lines.

Exercise 5.3. (1) Find out the 27 lines on the Fermat cubic X3
0 +X3

1 +X3
2 +

X3
3 = 0.

(2) Given a general point x in a smooth cubic surface, what is the number of
conics passing through x?
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