INTRODUCTION TO LOCAL CLASS FIELD THEORY

SHUJI SAITO (UNIVERSITY OF TOKYO)

Local class field theory is a fundamental pillar of the number theory. Roughly speaking, its main theorem identifies the Galois group of a local field K (i.e. a complete discrete valuation field with finite residue field) with its multiplicative group K^\times as a topological group. The basic aim of the lectures is to give a proof of the local class field theory. Prerequisites for the lectures are basic knowledge in algebra such as Galois theory and theory of simple algebras. A reference is J.-P. Serre’s book ‘Local fields’.

Lecture I: Valuations of fields

1.1 Valuations of fields: Basic definitions (valuation rings, residue fields, discrete valuations,...), basic examples (\mathbb{Z}_p, $F[[t]]$, ...).
1.2 Complete valuations: Completions of valuations, basic example \mathbb{Z}_p.
1.3 Hensel’s lemma and its applications.

Lecture II: Unramified extensions of complete discrete valuation fields

2.1 Extensions of valuations in fields extensions: Existence and uniqueness of extensions of valuations in finite extensions of complete discrete valuation fields.
2.2 Unramified extensions: Definition of unramified extensions and basic properties.

Lecture III: Brauer groups of local fields

4.1 Review of simple algebras and Brauer groups.
4.2 Cyclic algebras and fundamental pairings.
4.3 A fundamental theorem on simple algebras over a local field.
Lecture IV: Local class field theory

4.1 Reciprocity maps.
4.2 Statements of main results.
4.3 Kummer theory and Hilbert symbols.

Lecture V: Proof of local class field theory

5.1 Computations of Hilbert symbols.
5.2 Proof of local class field theory.
5.3 A glimpse of higher dimensional local class field theory.