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This course gives an introduction to infinite-dimensional representations of
real reductive Lie groups such as GL(n,R) by geometric and analytic meth-
ods.

I begin with some basic concepts and techniques on real reductive Lie
groups, their representations, and global analysis via representation theory,
with a number of classical examples.

If time permits, I would discuss some recent developments on branching
problems asking “how irreducible representations of groups behave/decompose
when restricted to subgroups”.
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Lecture 1.

View “representation theory”
A. from outside: various approaches and interactions with other areas of
mathematics
B. from inside: analysis and synthesis

—How are things built up from smallest objects?
—What are smallest objects?

• Building blocks:
—irreducible representations (4th Lecture)
—simple Lie groups (2nd Lecture)
—simple Lie algebras (2nd Lecture)
• Decomposition into irreducibles
Two important cases from representation theory:
• Induction · · · e.g. global analysis on homogeneous spaces
• Restriction · · · e.g. tensor product

Back to viewpoint A (from outside).
Various examples of classical analysis problems interpreted as special

cases of the general problem of irreducible decompositions of (unitary) rep-
resentations.

Example: three viewpoints of spherical harmonics
—global analysis for Laplacian
—induced representations (analysis on homogeneous spaces)
—restriction of reps (conformal geometry v.s. Riemannian geometry)

Reference: A part of the first lecture will be based on the perspectives
advocated in the following papers:

T. Kobayashi, Theory of discrete decomposable branching laws of uni-
tary representations of semisimple Lie groups and some applications, Sugaku
Expositions 18 (2005), Amer. Math. Soc., 1–37.

(Translated from the original article in Japanese)
T. Kobayashi, Global analysis by hidden symmetry, In: Representation

Theory, Number Theory, and Invariant Theory, Progress in Mathematics,
vol. 323 (2017), pp. 359–397.
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Lecture 2. Reductive groups–examples and

structure theory

The second lecture focuses on

real reductive Lie groups (and reductive Lie algebras).

We plan to discuss
• why are they basic?
• what is the definition?
• various examples;
• structure theorems;
and occasionally some advanced topics by presenting “new way of think-

ings”.

Why are “reductive Lie groups/algebras” basic?
We may apply the philosophy “analysis and synthesis” to Lie algebras.

Definition 2.1. A Lie algebras g is simple if g is not abelian and does not
contain ideals other than 0 and g.

Classification theory of simple Lie algebras over C or R.
–Killing, Cartan (1894 over C, 1914 over R)
–invariants (root system, Dynkin diagram, Satake diagram ([He, Kn])
–uniform construction (Serre, [Hu])

Remark 2.2. Classification of Lie algebras (of finite-dimension) is not so easy.
In fact, a description of consecutive extensions of abelian Lie algebras is
nontrivial. For example, classification of nilpotent Lie algebras is known
only for low dimensional cases.

Slightly more general than the concept of “simple Lie algebras” we also
introduce the definitions of semisimple or reductive Lie algebras, and explain
by examples a reason why we use “reductive” rather than simple Lie algebras.

Examples of real reductive Lie groups.

GL(n,K) K = R,C, or H (quaternionic number field),

O(p, q) =

{
g ∈ GL(p+ q,R) : tg

(
Ip O
O −Iq

)
g =

(
Ip O
O −Iq

)}
,

Sp(n,R) =
{
g ∈ GL(2n,R) : tg

(
O −In
In O

)
g =

(
O −In
In O

)}
.
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If time permits, I explain some structure theory of real reductive Lie
groups such as Cartan decomposition and parabolic subgroups or spend some
time on some abstract theory (e.g. Hilbert’s 5th problem).

Structure of real reductive groups.

(local) g = k+ p,
(global) G = K exp p.

Polar decomposition
G = KAK

Iwasawa decomposition
G = KAN

Minimal parabolic subgroup

P = MAN, M = centralizer of A in K

Theorem 2.3. (an affirmative solution to Hilbert’s 5-th problem) The con-
cept of Ck Lie groups is essentially the same.

Philosophy: algebraic structure raises topological assumptions to analytic
results.

cf. Exotic spheres (Kervarie-Milnor)
Exercise : check the above philosophy by a one-dimensional case.
Another example of this philosophy is:

Theorem 2.4 (von Neumann–Cartan). Any closed subgroup of GL(N,R)
carries a natural Lie group structure.

References for the 2nd lecture:
Textbooks:
[He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric

Spaces. Graduate Studies in Mathematics, 34. American Mathematical
Society, Providence, RI, 2001. xxvi+641 pp. ISBN: 0-8218-2848-7

[Hu] J. Humphreys, Introduction to Lie Algebras and Representation The-
ory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin,
1972. xii+169 pp.

[Kn] A. Knapp, Lie Groups beyond an Introduction. Second edition.
Progress in Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA, 2002.
xviii+812 pp. ISBN: 0-8176-4259-5 22-01.

[KO] T. Kobayashi, T. Oshima, Lie groups and Representation Theory,
Iwanami 2005, 638pp. ISBN 4-00-006412-9.
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Lecture 3. Infinite-dimensional irreducible rep-

resentation of SL(2,R) — viewpoint of branch-

ing laws

The set of equivalence classes of irreducible unitary representations of a group
G is called the unitary dual, and is denoted by Ĝ. The building blocks
of unitary representations of (algebraic) Lie groups are the unitary dual of
simple Lie groups such as SL(n,R). For noncompact simple Lie group G,

the unitary dual Ĝ contains
• a continuous family of irreducible unitary representations (e.g. principal

series representations, complementary series representations),
• a countable family of irreducible unitary representations (e.g. discrete

series representations).
The goal of 3rd lecture is to give an analytic proof (rather than the

usual algebraic proof) for the irreducibility of any unitary spherical prin-
cipal series representation of G = SL(2,R). The proof suggests an intimate
connection with various areas in mathematics (outside representation the-
ory), and also with a growing area such as branching problems (inside
representation theory).

We shall see that the irreducibility in Theorem 3.1 is delicate because a
unitary non-spherical principal series is not always irreducible (Remark 3.2
below).

Theorem 3.1. Let σλ(g) :=

∣∣∣∣(0, 1)g(01
)∣∣∣∣−λ

be a one-dimensional represen-

tation of P (the group of lower triangular matrices). Then L2-IndG
P (σλ) is

an irreducible unitary representation of G for all pure imaginary λ.

A usual proof is based on algebraic techniques ([Ba47], [V]).
In contrast, the strategy of our analytic proof ([KO, Chap11]) uses the

restriction to subgroups (“branching laws”). There are three typical one-
dimensional subgroups of G:

N = abelian subgroup consisting of unipotent elements.

A = abelian subgroup consisting of hyperbolic elements.

K = abelian subgroup consisting of elliptic elements.
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Sketch of proof. SupposeW is a closedG-invariant subspace of L2-IndG
P (σλ).

Obviously,
(1) W is N -invariant,
(2) W is A-invariant,
(3) W is K-invariant.
The condition (1) shows thatW is a Wiener subspace in L2(R), that is, W

is a translation invariant closed subspace. This means that W is the Fourier
transform of L2(E) for some measurable set E in R. Then the condition (2)
shows that E is either empty, R>0, R<0 or R up to measure zero set. Finally,
we define a natural unitary isomorphism between L2(R) and L2(S1), and
the condition (3) shows that E cannot be R>0, R<0, whence L2-IndG

P (σλ) is
irreducible.

Remark 3.2. There is a similar family of representations with continuous
parameter λ ∈ C, called the non-spherical principal unitary representation
L2-IndG

P (σλ ⊗ sgn) which are generically irreducible. However, it is not irre-
ducible at λ = 0, and splits into the direct sum of two irreducible unitary
representations of G = SL(2,R). In fact, the Hardy space is an irreducible
submodule at λ = 0, which corresponds to E = R>0 in the above proof.

References for the third lecture:
[Ba47] V. Bargmann, Irreducible unitary representations of the Lorentz

group, Ann. Math., 48,(1947), 568–640.
[KO] T. Kobayashi, T. Oshima, Lie groups and Representation Theory,

Iwanami 2005, 638 pp. ISBN 4-00-006412-9.
[V] D. Vogan, Jr. Representations of Real Reductive Lie Groups, 1981,

754 pp., Birkhäuser, ISBN: 3-7643-3037-6.
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Lecture 4. Classification problems of irreducible

representations of reductive groups

I plan to explain
• equivariant fiber bundles
• induced representations

and then discuss the current status of the classification theory of irreducible
representations together with various approaches:

A irreducible finite-dimensional representations;
B irreducible (infinite-dimensional) admissible representations;
C irreducible unitary representations of real reductive groups such as

GL(n,R).
For A, the classification theory is classical, known as the Cartan-Weyl

highest weight theory.
• invariants
—highest weight (Cartan-Weyl)
• construction
—use complex geometry (Borel-Weil)
—use “universality” (Verma)

For B, there are three approaches:
• analytic approach (an estimate of matrix coefficients —Langlands)
• algebraic approach (Lie algebra cohomology —Vogan)
• geometric approach (D-modules)

For C, the problems are still open, although there have been extensive
and important progresses over 70 years.
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Lecture 5. Further topics

The fifth lecture contains some advanced topics but I try to keep the lecture
to be accessible to the beginners as well. I also plan to mention some cutting-
edge of this active area.

We begin with the following.

Naive Question 5.1. Is a vector space V controlled “well” by a group G?

For infinite-dimensional representation V , obstructions for “good control”
could be:

a. continuously many irreducibles may occur in V .
b. irreducible representations might be of infinite dimension.
c. multiplicity might be infinite.

Actually, both a and b are harmless, whereas c is serious. Thus, we may
formulate Naive Question 5.1 into rigorous problems as follows:

Basic Question 5.2. Given a representation (π, V ) of G,
(1) when is the multiplicity m(σ) < ∞ for all irreducible σ?
(2) when is the multiplicity m(σ) uniformly bounded with respect to σ?
Here, for σ ∈ Irr(G), m(σ) ∈ N ∪ {∞} stands for the multiplicity of σ

occurring in V (there are subtle problems to define m(σ) when dimV = ∞,
but we postpone it for now).

(1) (even better, (2)) will give us a nice framework for detailed study of
representations.

Typical Settings for (π, V ) in Basic Question 5.2 are as follows:
(global analysis—induction) Given a G-space X, consider the regular rep-

resentation on V := the space of functions on X.
(branching problem—restriction) Given an irreducible representation π

of G̃ and its subgroup G, consider the restriction π|G as a representation of
G.

To have a better understanding on these two settings, we consider basic
questions for induction and restriction. In what follows, we suppose that
G′ ⊂ G are pair of real reductive Lie groups.

Induction Analysis on homogeneous spaces G/G′ (1950–; long history,
but still developing)

There is a natural differential operator (e.g. Laplacian) on the homoge-
neous space G/G′ as it carries a G-invariant pseudo-Riemannian structure.
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Typical problems in global analysis include:
• Construct eigenfunctions for (natural) differential operators on G/G′.
• Expand arbitrary functions into eigenfunctions.
Let 1 denote the trivial one-dimensional representation of G′. Then we

have natural isomorphisms

global analysis induction of representations

C∞(G/G′) ≃ C∞-IndG
G′(1)

L2(G/G′) ≃ L2-IndG
G′(1)

Then we can relate these problems in global analysis with a problem in
representation theory of G, such as

• Plancherel-type theorem : irreducible decomposition of the regular rep-
resentation of the group G on the Hilbert space L2(G/G′).

The relationship is built on a variation of Schur’s lemma.

Restriction Branching problem from G to the subgroup G′.
This is a an active and new area, and a systematic study has been started

relatively recently, see recent books [SB2015, SB2016, SB2018], and [K-2015]
for a program on branching problems of infinite-dimensional representations.

We consider the following setting. Let π be an irreducible representation
of G. The restriction π|G′ is regarded as a representation of the subgroup G′,
which is no more irreducible in general.

The first important problem is to establish the general theory about the
behavior of the restriction π|G′ (e.g. detect whether spectrum is discrete
or continuous; multiplicity is finite or infinite, etc.) The general theory for
spectrum is discussed in [K-1998], and that for multiplicities are explained
in Theorem 5.6 and Theorem 5.7 below.

Second, we wish to understand the restriction π|G′ in a more concrete
way. For this, let τ be another irreducible rep of G′. Typical (concrete)
problems for restriction include

• Determine when HomG′(π|G′ , τ) ̸= {0};
• (branching law) Decompose π|G′ into irreducible representations of the

subgroup G′.
• Construct intertwining operators (symmetry breaking operators) from

π to τ .
The second one requires π to be unitary, but the first and third one not.
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General theory on multiplicities for induction and restriction.
We now explain the solutions to Basic Question 5.2 for induction and

restriction, see [KO-2013] and [K-2014], respectively, for the original articles.

Theorem 5.3. (global analysis) The following two conditions are equivalent:

(i) (representation theory) The space HomG(π,C
∞(G/G′)) of intertwining

operators is finite-dimensional for all π ∈ Irr(G).

(ii) (geometry: real spherical) A minimal parabolic subgroup P has an open
orbit in G/G′, that is, G/G′ is a real spherical manifold.

Theorem 5.4. (global analysis) The following two conditions are equivalent:

(i) (representation theory) The dimension of HomG(π,C
∞(G/G′)) is uni-

formly bounded with respect to π ∈ Irr(G).

(ii) (complex geometry) BC has an open orbit in GC/G
′
C, that is, GC/G

′
C is

spherical.

These two theorems give an answer to Basic Question 5.2 when

V = the space of functions on a homogeneous space G/G′.

Remark 5.5. One can extend Theorems 5.3 - 5.4 to the sections ofG-equivariant
vector bundles of finite rank, and also to non-reductive subgroups G′.

We now give an answer to Basic Question 5.2 in the setting of the restric-
tion, that is,

V = the representation space of a larger group.

Theorem 5.6. (restriction) The following two conditions are equivalent:

(i) (representation theory) HomG′(π|G′ , τ) is finite-dimensional for all π ∈
Irr(G) and τ ∈ Irr(G′).

(ii) (geometry) A minimal parabolic subgroup P ′ of G′ has an open orbit in
G/P , that is, (G×G′)/diag(G′) is real spherical.

Theorem 5.7. (restriction) The following two conditions are equivalent:

(i) (representation theory) The dimension of HomG′(π|G′ , τ) is uniformly
bounded with respect to π ∈ Irr(G) and τ ∈ Irr(G′).
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(ii) (complex geometry) A Borel subgroup B′
C of G′

C has an open orbit in
GC/BC, that is, (GC ×G′

C)/diag(G
′
C) is real spherical.

Theorems 5.3 - 5.7 single out nice settings in which we could expect
detailed study on

• (induction) global analysis by using representation theory,
• (restriction) understanding of symmetry breaking.
Some special cases have been studied extensively, and some others are

new. Here are some settings that arise from the criteria in Theorems 5.3 -
5.7.

Example 5.8. (1) Reduction symmetric spaces always satisfy the crite-
rion in Theorem 5.4 (cf. Plancherel-type formula, [D-1998]).

(2) Whittaker models (the criterion in Theorem 5.4 is satisfied if G is a
quasi-split group).

(3) Tensor product representations have finite-multiplicities when G =
O(n, 1), as is shown by Theorem 5.6. The classification of the pairs
(G,G′) satisfying the criterion in Theorem 5.6 is given in [KM-2015].

(4) The geometry (ii) in Theorem 5.7 singles out the pair, (GLn, GLn−1)
and (On, On−1), cf. the Gan–Gross–Prasad Conjecture [GP-1992][KS-
2018]).

Theorem 5.3 suggests a construction of eigenfunctions for invariant dif-
ferential operators on real spherical manifolds.

Let (σ, V ) be a finite-dimensional representation of a parabolic subgroup
P of G, V = G×P V the homogeneous vector bundle over the real flag variety
G/P , and V∗

2ρ the dualizing bundle (see [SB2015], Chapter 3).

Theorem 5.9. (generalized Poisson transform [K-1992]) Suppose w is an
H-invariant element of Γ(X,V∗

2ρ). Then (Twf)(g) := (π(g−1)f, w) induces a

G-intertwining operator Tw : IndG
P (σ) → C∞(G/H). In particular, the image

satisfies a system of partial differential equations

Dzϕ = λσ(z)ϕ for all z ∈ Z(g).

Here, Z(g) is the center of the complexified Lie algebra gC, Dz is a G-
invariant differential operator on G/H induced by z ∈ Z(gC), and λσ(z)
is the scalar determined by σ.
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Example 5.10. G = SL(2,R) and K = SO(2). Keep notation as in the 3rd
lecture. Define w by

w(g) =

∥∥∥∥g(01
)∥∥∥∥−λ−2

.

Let H be the upper half-plane identified with the upper-half plane G/K.
Then

Tw : IndG
P (σλ) → C∞(G/K)

is written in the coordinate as

Tw : C
∞
c (R) → C∞(H), f 7→

∫
R
f(t)(y/(x− t)2 + y2)λ/2+1dt

is the twisted Poisson transform, and the image satisfies

∆g =
λ(λ+ 2)

4
g

where ∆ is the hyperbolic Laplacian y2( ∂2

∂x2 +
∂2

∂y2
). Furthermore, Tw is injec-

tive if Reλ ≥ −1.
The “converse” of Tw is given as “boundary maps”, which yield a short

proof of Casselman’s subrepresentation theorem (cf. [W-1988]) as well as the
proof for (ii)→(i) in Theorem 5.3. See [KO-2013] for further perspectives on
this topic.

Finally, concerning symmetry breaking operators for the restriction, we
mention recent development in connection with conformal geometry. The
model space for conformally symmetry breaking operators for hypersurfaces
is given as a pair (Sn, Sn−1), and its pair of conformal groups arises from
the criterion in Theorem 5.7. The construction of all conformal symmetry
breaking operators has been recently accomplished in a series of the books
[SB2015, SB2016, SB2018].

References on the 5th Lecture and for some further readings:
[D-1998] P. Delorme, Formule de Plancherel pour les espaces symétriques

réductifs, Ann. Math. 147, (1998), pp.417–452.
[GP-1992] B.H.Gross and D.Prasad, On the decomposition of SOn when

restricted to SOn−1, Canad. J. Math. 44 (1992), pp.974-1002.
[K-1992] T.Kobayashi, Singular Unitary Representations and Discrete Se-

ries for Indefinite Stiefel Manifolds U(p, q;F )/U(p −m, q;F ), Mem. Amer.
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Math. Soc. 462, Amer. Math. Soc., 1992. v+106 pages, ISBN-13: 978-0-
8218-2524-2.

[K-1998] T. Kobayashi, Discrete decomposability of the restriction of Aqλ)
with respect to reductive subgroups. II. Micro-local analysis and asymptotic
K-support. Ann. of Math. 147 (1998), no. 3, 709–729.

[K-2015] T. Kobayashi. A program for branching problems in the repre-
sentation theory of real reductive groups. Progress in Mathematics 312,
pages 277-322. Birkhäuser, 2015.

[KO-2013] T. Kobayashi and T. Oshima. Finite multiplicity theorems for
induction and restriction. Advances in Mathematics, 248, (2013), pp.921-
944.

[K-2014] T. Kobayashi. Shintani functions, real spherical manifolds, and
symmetry breaking operators. Developments in Mathematics, 37, pages 127-
159, 2014.

[KM-2014] T. Kobayashi and T. Matsuki. Classification of finite-multiplicity
symmetric pairs. Transformation Groups, 19, (2014), pp.457-493.

[KS-2018] T.Kobayashi and B.Speh, Symmetry breaking for orthogonal
groups and a conjecture by B. Gross and D. Prasad. In: Geometric Aspects
of the Trace Formula, Simons Symposium on the Trace Formula, pages 245-
266. Springer, Cham, 2018.

[W-1988] Nolan R. Wallach, Real Reductive Groups. I, Pure and Applied
Mathematics 132, Academic Press, 1988.

Books on Symmetry Breaking:
[SB2015] T. Kobayashi, B. Speh, Symmetry Breaking for Representa-

tions of Rank One Orthogonal Groups, Memoirs of American Mathematical
Society, 238, (2015), vi+112 pp., ISBN: 978-1-4704-1922-6.

[SB2016] T. Kobayashi, T. Kubo, M. Pevzner, Conformal Symmetry
Breaking Operators for Differential Forms on Spheres, Lecture Notes in
Mathematics, 2170, (2016), ix+192 pp. Softcover ISBN: 978-981-10-2656-0.
eBook ISBN: 978-981-10-2657-7.

[SB2018] T. Kobayashi, B. Speh, Symmetry Breaking for Representations
of Rank One Orthogonal Groups II, Lecture Notes in Mathematics, 2234,
(2018), xv+342 pp., eBook ISBN: 978-981-13-2901-2.
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