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1 Introduction

Our aim here is to compare two mathematical approaches to chiral 2-dimensional
conformal field theory. Conformal field theory is a kind of quantum field theory and
related to many different topics in mathematics. It has attracted much attention
of many researchers in mathematics. In this note, we present two mathematical
approaches to chiral conformal field theory and show a relation between them. Our
emphasis is on the operator algebraic approach based on functional analysis, and
we start with basics of operator algebra theory.

Reference [19] is a longer version of this note, and [20] is a shorter version.

2 Basics of Operator Algebras

We prepare some basic facts about operator algebras which are necessary for study-
ing conformal field theory, which was first introduced in [2]. We do not include
proofs. As standard references, we list the textbook [30].

2.1 C∗-algebras and von Neumann algebras

We provide some minimal basics on theory of operator algebras. For simplicity,
we assume all Hilbert spaces appearing in the text are separable. Our conven-
tion for notations is as follows. We use A,B, . . . ,M,N, . . . for operator algebras,
a, b, . . . , u, v, . . . , x, y, z for operators, H,K, . . . for Hilbert spaces and ξ, η, . . . for
vectors in Hilbert spaces.

Let H be a complex Hilbert space and B(H) be the set of all bounded linear
operators on H. We have a natural ∗-operation x 7→ x∗ on B(H). Here we need
two topologies on this set as follows.

Definition 2.1 (1) The norm topology on B(H) is induced by the operator norm
∥x∥ = sup∥ξ∥≤1 ∥xξ∥.
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(2) We define convergence xi → x in the strong operator topology when we have
xiξ → xξ for all ξ ∈ H.

Note that the strong operator topology is weaker than the norm topology. This is
because we have another topology called the weak operator topology, which is weaker
than the strong operator topology. The norm convergence is uniform convergence on
the unit ball of the Hilbert space and the strong operator convergence is pointwise
convergence on the Hilbert space.

Definition 2.2 (1) Let M be a subalgebra of B(H) which is closed in the ∗-
operation and contains the identity operator I. We sayM is a von Neumann algebra
if M is closed in the strong operator topology.

(2) Let A be a subalgebra of B(H) which is closed in the ∗-operation. We say
A is a C∗-algebra if A is closed in the norm topology.

By this definition, a von Neumann algebra is automatically a C∗-algebra, but
a von Neumann algebra is quite different from “ordinary” C∗-algebras, so we of-
ten think that operator algebras have two classes, von Neumann algebras and C∗-
algebras.

A commutative C∗-algebra containing the multiplicative unit is isomorphic to
C(X), where X is a compact Hausdorff space and C(X) means the algebra of
all complex-valued continuous functions. A commutative von Neumann algebra is
isomorphic to L∞(X,µ), where (X,µ) is a measure space.

Easy examples are as follows.

Example 2.3 Let H be L2([0, 1]). The polynomial algebra C[x] acts on H by
left multiplication. The image of this representation is a ∗-subalgebra of B(H).
(The ∗-operation is given by taking the complex conjugate.) Its norm closure is
isomorphic to C([0, 1]) and its closure in the strong operator topology is isomorphic
to L∞([0, 1]).

If a C∗-algebra is finite dimensional, then it is also a von Neumann algebra, and
it is isomorphic to

⊕k
j=1Mnj

(C), where Mn(C) is the n× n-matrix algebra.

Definition 2.4 For X ⊂ B(H), we set

X ′ = {y ∈ B(H) | xy = yx for all x ∈ X}.

We call X ′ the commutant of X.

We have the following proposition for von Neumann algebras.

Proposition 2.5 Let M be a subalgebra of B(H) closed under the ∗-operation and
containing I. Then the double commutant M ′′ is equal to the closure of M in the
strong operator topology.
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Note that taking the commutant is a purely algebraic operation, but the above
Proposition says it contains information on the topology.

For von Neumann algebras M ⊂ B(H) and N ⊂ B(K), we have natural oper-
ations of the direct sum M ⊕ N ⊂ B(H ⊕ K) and the tensor product M ⊗ N ⊂
B(H ⊗K). We have the following proposition.

Proposition 2.6 The following conditions are equivalent for a von Neumann alge-
bra M .

(1) The von Neumann algebra M is not isomorphic to the direct sum of two von
Neumann algebras.

(2) The center M ∩M ′ of M is CI.
(3) Any two-sided ideal of M closed in the strong operator topology is equal to 0

or M .

A natural name for such a von Neumann algebra would be a simple von Neumann
algebra, but for a historic reason, this name is not used and such a von Neumann
algebra is called a factor instead.

2.2 Factors of types I, II and III

The matrix algebra Mn(C) is a factor and the algebra B(H) is also a factor. The
former is called a factor of type In, and the latter is called a factor of type I∞ if H
is infinite dimensional. We introduce another example of a factor.

Example 2.7 For x ∈M2(C)⊗· · ·⊗M2(C), we consider the embedding x 7→ x⊗I2 ∈
M2(C)⊗· · ·⊗M2(C)⊗M2(C), where I2 is the identity matrix inM2(C). We identify
M2(C)⊗· · ·⊗M2(C) withM2k(C), where k is the number of the factorial components
M2(C) so that the above embedding is compatible with this identification. Let tr
be the usual trace Tr on M2k(C) divided by 2k. Then this tr is compatible with
the embedding M2k(C) into M2k+1(C). Let A be the increasing union of M2k(C)
with respect to this embedding. This is a ∗-algebra and the linear functional tr is
well-defined on A.

Setting (x, y) = tr(y∗x) for x, y ∈ A, we make A a pre-Hilbert space. (We use
a convention that an inner product is linear in the first variable, which is usual in
mathematics, but different from the standard convention in physics.) Let H be its
completion. For x ∈ A, let π(x) be the multiplication operator y 7→ xy on A. This
is extended to a bounded linear operator on H and we still denote the extension
by π(x). Then π is a ∗-homomorphism from A into B(H). The norm closure of
π(A) is a C∗-algebra called the type 2∞-UHF algebra or the CAR algebra. (The
abbreviations UHF and CAR stand for “Uniformly Hyperfinite” and “Canonical
Anticommutation Relations”, respectively.) The closure M of π(A) in the strong
operator topology is a factor and it is called the hyperfinite type II1 factor. (Here the
name “hyperfinite” means that we have an increasing union of finite dimensional von
Neumann algebras which is dense in the strong operator topology. A hyperfinite type
II1 factor is unique up to isomorphism. Sometimes, the terminology AFD, standing
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for “approximately finite dimensional”, is used instead of “hyperfinite”.) The Fields
medal theorem of Connes [5] gives an intrinsic characterization of the hyperfinite II1
factor.

The linear functional tr is extended to M and satisfies the following properties.

1. We have tr(xy) = tr(yx) for x, y ∈M .

2. We have tr(x∗x) ≥ 0 for x ∈M and if tr(x∗x) = 0, then we have x = 0.

3. We have tr(I) = 1.

If an infinite dimensional von Neumann algebra has a linear functional tr satis-
fying the above three conditions, then it is called a type II1 factor. Such a linear
functional is unique on each type II1 factor and called a trace. There are many type
II1 factors which are not hyperfinite.

A type II∞ factor is a tensor product of a type II1 factor and B(H) for an infinite
dimensional Hilbert space H.

Definition 2.8 Two projections p, q in a von Neumann algebra are said to be equiv-
alent if we have u in the von Neumann algebra satisfying p = uu∗ and q = u∗u.

If uu∗ is a projection, then u∗u is also automatically a projection, and such u is
called a partial isometry.

Definition 2.9 A factor is said to be of type III if any two non-zero projections in
it are equivalent and it is not isomorphic to C.

This definition is different from the usual definition of a type III factor, but
means the same condition since we consider only separable Hilbert spaces.

Two equivalent projections are analogous to two sets having the same cardinality
in set theory. Then the property analogous to the above in set theory would be
that any two non-empty subsets have the same cardinality for a set which is not
a singleton or the empty set. Such a condition is clearly impossible in set theory.
Still, based on this analogy, we interpret that the above property for a type III factor
manifests a very high level of infiniteness. Because of this analogy, a type III factor
is also called purely infinite.

The following is an example of a type III factor.

Example 2.10 Fix λ with 0 < λ < 1 and set ϕλ :M2(C) → C by

ϕλ

((
a b
c d

))
=

a

1 + λ
+

dλ

1 + λ
.

Let A be the same as in Example 2.7. The linear functionals ϕλ ⊗ · · · ⊗ ϕλ on
M2(C) ⊗ · · · ⊗M2(C) are compatible with the embedding, so ϕλ =

⊗
ϕλ is well-

defined on A. We set the inner product on A by (x, y) = ϕλ(y∗x) and set H be its
completion. Let π(x) be the left multiplication of x on A, then it is extended to a
bounded linear operator on H again. The extension is still denoted by π(x). The
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norm closure of π(A) is isomorphic to the 2∞ UHF algebra in Example 2.7. The
closure M of π(A) in the strong operator topology is a type III factor, and we have
non-isomorphic von Neumann algebras for different values of λ. They are called the
Powers factors.

It is non-trivial that Powers factors are of type III. Here we give a rough idea why
this should be the case. On the one hand, two equivalent projections are regarded
as “having the same size”. On the other hand, now the functional ϕλ is also involved
in measuring the size of projections. The two projections(

1 0
0 0

)
,

(
0 0
0 1

)
are equivalent, but have different “sizes” according to ϕλ. Because of this incompat-
ibility, we do not have a consistent way of measuring sizes of projections, and it ends
up that all nonzero projections are of “the same size” in the sense of equivalence.

Connes has refined the class of type III factors into those of type IIIλ factors
with 0 ≤ λ ≤ 1. The Powers factors as above are of type IIIλ with 0 < λ < 1. If
M and N are the Powers factors of type IIIλ and IIIµ, respectively, and log λ log µ
is irrational, then M ⊗N is a factor of type III1. The isomorphism class of M ⊗N
does not depend on λ and µ as long as log λ/ log µ is irrational, and this factor is
called the Araki-Woods factor of type III1. The factor which appears in conformal
field theory is always this one. The Powers and Araki-Woods factors are hyperfinite.
There are many type III factors which are not hyperfinite, but they do not appear
in conformal field theory.

2.3 Dimensions and modules

First consider a trivial example of a factor, M2(C). We would like to find the
“most natural” Hilbert space on which M2(C) acts. One might think it is clearly
C2, but from our viewpoint of infinite dimensional operator algebras, it is not the
right answer. Instead, letM2(C) act on itself by the left multiplication and we put a
Hilbert space structure onM2(C) so that a natural system {eij} of matrix units gives
an orthonormal basis. Then the commutant of the left multiplication of M2(C) is
exactly the right multiplication of M2(C) and thus the left and right multiplications
are now symmetric. This is the natural representation from our viewpoint, and we
would like to consider its infinite dimensional analogue.

LetM be a type II1 factor with tr. Put an inner product onM by (x, y) = tr(y∗x)
and denote its completion by L2(M). The left and right multiplications by an
element of M on M extend to bounded linear operators on L2(M). We say that
L2(M) is a left M -module and also a right M -module.

Let p be a projection in M . Then L2(M)p is naturally a left M -module. For
projections pn ∈ M , we define dimM

⊕
n L

2(M)pn =
∑

n tr(pn). Then it turns out
that any left M -module H is unitarily equivalent to this form and this number
dimM H ∈ [0,∞] is well-defined. It is called the dimension of a left M -module
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H, and is a complete invariant up to unitary equivalence. Note that we have
dimM L2(M) = 1.

For a type III factorM , any two nonzero leftM -modules are unitarily equivalent.
In this sense, representation theory of a type II1 factor is dictated by a single

number, the dimension, and that of a type III factor is trivial. Note that a left
module of a type II or III factor is never irreducible.

2.4 Subfactors

Let M be a type II1 factor with tr. Suppose N is a von Neumann subalgebra of M
and N is also a factor of type II1. We say N ⊂M is a subfactor. (The unit of N is
assumed to be the same as that of M .) Our general reference for subfactor theory
is [10]. The Hilbert space L2(M) is a left M -module, but it is also a left N -module
and we have dimN L

2(M). This number is called the index of the subfactor and
denoted by [M : N ]. The index value is in [1,∞]. The celebrated theorem of Jones
[17] is as follows.

Theorem 2.11 The set of the index values of subfactors is equal to

{4 cos2 π
n
| n = 3, 4, 5, . . . } ∪ [4,∞].

One is often interested in the case M is hyperfinite, when N is automatically
hyperfinite. It is often assumed that the index value is finite. A subfactor N ⊂ M
is said to be irreducible if we have N ′ ∩M = C. Irreducibility of a subfactor is also
often assumed.

A subfactor is an analogue of an inclusion L∞(X,B1, µ) ⊂ L∞(X,B2, µ) of com-
mutative von Neumann algebras where B1 is a σ-subalgebra of B2 on the space X
and µ is a probability measure. That is, a smaller commutative von Neumann alge-
bra means that we have less measurable sets. For f ∈ L∞(X,B2, µ), we regard it as
an element in L2(X,B2, µ) and apply the orthogonal projection P onto L2(X,B1, µ).
Then Pf is in L∞(X,B1, µ), and this map from L∞(X,B2, µ) onto L

∞(X,B1, µ) is
called a conditional expectation. For a subfactor N ⊂ M of type II1, we have a
similar map E :M → N satisfying the following properties.

1. E(x∗x) ≥ 0 for all x ∈M .

2. E(x) = x for all x ∈ N .

3. tr(xy) = tr(E(x)y) for all x ∈M , y ∈ N .

4. E(axb) = aE(x)b for all x ∈M , a, b ∈ N .

5. E(x∗) = E(x)∗ for all x ∈M .

6. ∥E(x)∥ ≤ ∥x∥ for all x ∈M .
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This map E is also called the conditional expectation from M onto N . Actually,
properties 1, 4 and 5 follow from 2 and 6.

Kosaki [24] extended the definition of the index of a subfactor to the index of a
subfactor of type III. Many results on indices of type III factors are parallel to those
of type II factors.

2.5 Bimodules and relative tensor products

Let M be a type II factor with tr. The Hilbert space L2(M) is a left M -module
and a right M -module. Furthermore, the left action of M and the right action of
M commute, so this is an M -M bimodule. We consider a general M -N bimodule

MHN for type II1 factors M and N . For a bimodule MHN , we have dimHN defined
in a similar way to the definition of dimM H. If we have dimM H dimHN < ∞, we
say that the bimodule is of finite type. We consider only bimodules of finite type.

LetM,N,P be type II1 factors and consider a generalM -N bimodule MHN and
an N -P bimodule NKP . Then we can define a relative tensor product MH ⊗N KP ,
which is an M -P bimodule. This is again of finite type. We have

ML
2(M)⊗M HN

∼=MH ⊗N L2(N)N∼=MHN .

For anM -N bimodule MHN , we have the contragredient (or conjugate) bimodule

NH̄M . As a Hilbert space, it consists of the vectors of the form ξ̄ with ξ ∈ H and
has operations ξ + η = ξ̄ + η̄ and αξ = ᾱξ̄. The bimodule operation is given by
x · ξ̄ · y = y∗ · ξ · x∗, where x ∈ N and y ∈M . This is again of finite type.

ForM -N bimodules MHN and MKN , we say that a bounded linear map T : H →
K is an intertwiner when we have T (xξy) = xT (ξ)y for all x ∈ M , y ∈ N , ξ ∈ H.
We denote the set of all the intertwiners from H to K by Hom(MHN ,MKN). We
say that MHN is irreducible if Hom(MHN ,MHN) = CI. We have a natural notion
of a direct sum MHN ⊕ MKN .

A bimodule MHN decomposes into a finite direct sum of irreducible bimodules,
because we assume MHN is of finite type here.

Start with a subfactor N ⊂ M of type II1 with [M : N ] < ∞. Then the
N -M bimodule NL

2(M)M is of finite type. The finite relative tensor products of

NL
2(M)M and ML

2(M)M and their irreducible decompositions produce four kinds
of bimodule, N -N , N -M , M -N and M -M . They are all of finite type. We have
only finitely many irreducible bimodules for one of them up to isomorphisms only
if we have only finitely many irreducible bimodules for all four kinds. When this
finiteness condition holds, we say the subfactor N ⊂ M is of finite depth. If the
index is less than 4, the subfactor is automatically of finite depth.

Consider a type II1 subfactor N ⊂ M of finite depth and pick a representative
from each of finitely many isomorphism classes of the N -N bimodules arising in
the above way. For each such NXN , we have dimN X = dimXN . For such NXN

and NYN , the relative tensor product NX ⊗N YN is isomorphic to
⊕k

j njNZjN ,
where {NZjN} is the set of the representatives. This gives fusion rules and the
bimodule NL

2(M)N plays the role of the identity for the relative tensor product.
(Note that the name “fusion” sometimes means the relative tensor product operation
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is commutative, but we do not assume this here.) For each NZjN , we have k with

NZjN
∼=NZkN . We also have the Frobenius reciprocity, dimHom(NX⊗N YN ,NZN) =

dimHom(NX,NZ ⊗N ȲN). The N -N bimodules isomorphic to finite direct sums of
these representative N -N bimodule make a unitary fusion category, which is an
abstract axiomatization of this system of bimodules and is some kind of a tensor
category. A basic model of unitary fusion category is that of finite dimensional
unitary representations of a finite group. We recall the definitions for unitary fusion
categories as follows. (See [9] for a general reference on tensor categories.)

Definition 2.12 A category C is called an abelian category over C is we have the
following.

1. All Hom(U, V ) are C-vector spaces and the compositions

Hom(V,W )× Hom(U, V ) → Hom(U,W ), (ϕ, ψ) 7→ ϕ ◦ ψ

are C-bilinear, where U, V,W are objects in C.

2. We have a zero objects 0 in C with Hom(0, V ) = Hom(V, 0) = 0 for all objects
V in C.

3. We have finite direct sums in C.

4. Every morphism ϕ ∈ Hom(U, V ) has a kernel kerϕ ∈ MorC and a cokernel
cokerϕ ∈ MorC.

5. Every morphism is the composition of an epimorphism followed by a monomor-
phism.

6. If kerϕ = 0, then we have ϕ = ker(cokerϕ) and if cokerϕ = 0, then we have
ϕ = coker(kerϕ).

Definition 2.13 An object U in an abelian category C is called simple if any injec-
tion V ↪→ U is either 0 or an isomorphism.

An abelian category C is called semisimple if any object V is isomorphic to a
direct sum of simple ones, V∼=

⊕
i niVi, where Vi are simple objects, ni are multi-

plicities and only finitely many ni are nonzero.

Definition 2.14 An abelian category C is called a monoidal category if we have
the following.

1. A bifunctor ⊗ : C × C → C.

2. A functorial isomorphism αUVW from (U ⊗ V )⊗W to U ⊗ (V ⊗W ).

3. A unit object 1 in C and functorial isomorphisms λV : 1 ⊗ V∼=V and ρV :
V ⊗ 1∼=V .
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4. If X1 and X2 are two expressions obtained from V1⊗V2⊗· · ·⊗Vn by inserting
1’s and brackets. Then all isomorphisms composed of α’s, λ’s, ρ’s and their
inverses are equal.

5. The functor ⊗ is bilinear on the space of morphisms.

6. The object 1 is simple and End(1) = C.

Definition 2.15 Let C be a monoidal category and V be an object in C. A right
dual to V is an object V ∗ with two morphisms eV : V ∗⊗V → 1 and iV : 1 → V ⊗V ∗

such that we have (idV ⊗ eV )(iV ⊗ idV ) = idV and (eV ⊗ idV ∗)(idV ∗ ⊗ iV ) = idV ∗ .
Similarly, we define a left dual of V to be ∗V with morphisms e′V : V ⊗ ∗V → 1

and i′V : 1 → ∗V ⊗ V satisfying similar axioms.

Definition 2.16 A monoidal category is called rigid if every object has right and
left duals.

A tensor category is a rigid abelian monoidal category.
A fusion category is a semisimple tensor category with finitely many simple

objects and finite dimensional spaces of morphisms.

Definition 2.17 A fusion category C over C is said to be unitary if we have the
following conditions.

1. We have a Hilbert space structure on each Hom space.

2. We have a contravariant endofunctor ∗ on C which is the identity on objects.

3. We have ∥ϕψ∥ ≤ ∥ϕ∥ ∥ψ∥ and ∥ϕ∗ϕ∥ = ∥ϕ∥2 for each morphism ϕ, ψ where ϕ
and ψ are composable.

4. We have (ϕ⊗ ψ)∗ = ϕ∗ ⊗ ψ∗ for each morphism ϕ, ψ.

5. All structure isomorphisms for simple objects are unitary.

For any such N -N bimodule NHN , we automatically have dimN H = dimHN .
The index value of a subfactor of finite depth is known to be a cyclotomic integer
automatically. Conversely, we have the following theorem.

Theorem 2.18 Any abstract unitary fusion category is realized as that of N-N
bimodules arising from some (not necessarily irreducible) subfactor N ⊂ M with
finite index and finite depth, where N and M are hyperfinite type II1 factors.
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2.6 Classification of subfactors with small indices

Popa’s celebrated classification theorem [28] say that if a hyperfinite type II1 sub-
factor N ⊂ M has a finite depth, then the finitely many irreducible bimodules of
the four kinds and the intertwiners between their tensor products contain complete
information on the subfactor and recover N ⊂M .

Classification of subfactors up to index 4 was announced in [27] as follows.

Theorem 2.19 The hyperfinite II1 subfactors with index less than 4 are labelled
with the Dynkin diagrams An, D2n, E6 and E8. Subfactors corresponding to An and
D2n are unique and those corresponding to E6 and E8 have two isomorphism classes
each.

Recently, we have classification of subfactors with finite depth up to index 5. See
[18] for details. Many of them are related to conformal field theory and quantum
groups, but we see some exotic examples which have been so far unrelated to them.
Up to index 5, we have three such exotic subfactors, the Haagerup subfactor [1], the
Asaeda-Haagerup subfactor [1] and the extended Haagerup subfactor.

This is a very important active topic of the current research, but we refrain from
going into details here.

2.7 Bimodules and endomorphisms

In this section, M is a type III factor. We present another formulation of the
bimodule theory which is more useful in conformal field theory.

We can also define L2(M) as a completion of M with respect to some inner
product arising from some positive linear functional on M . Then the left action of
M is defined usually, and we can also define the right action of M on L2(M) using
the modular conjugation in the Tomita-Takesaki theory. We then have an M -M
bimodule ML

2(M)M , and the commutant of the left action of M is exactly the right
action of M .

Consider an M -M bimodule H. The left actions of M on H and L2(M) are
unitarily equivalent since M is a type III factor. So by changing H within the
equivalence class of left M -modules, we may and do assume that H = L2(M) and
the left actions of M on H and L2(M) are the same. Now consider the right
action of M on H = L2(M). It must commute with the left action of M , but
this commutant is exactly the right action of M on L2(M), so this means that a
general right action ofM on H is given by a homomorphism ofM intoM , that is, an
endomorphism ofM . (We consider only unital homomorphisms and endomorphisms
in this text.) Conversely, if we have an endomorphism λ ofM , then we can define an
M -M bimodule L2(M) with the standard left action and the right action given by
x·ξ ·y = xξλ(y). In this way, considering bimodules and considering endomorphisms
are the same. We now see the corresponding notions of various ones in the setting
of bimodules. We write End(M) for the set of all endomorphisms of M .

Two endomorphisms λ1 and λ2 of M are said to be unitarily equivalent if we
have a unitary u with Ad(u) · λ1 = λ2. The unitary equivalence of endomorphisms
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corresponds to the isomorphism of bimodules. A unitary equivalence class of endo-
morphisms is called a sector. This name comes from superselection sectors which
appear later in this text. We write [λ] for the sector of λ.

For two endomorphisms λ1 and λ2 of M , we define the direct sum λ1 ⊕ λ2
as follows. Since M is a factor of type III, we have isometries V1, V2 ∈ M with
V1V

∗
1 +V2V

∗
2 = I. Then we set (λ1⊕λ2)(x) = V1λ1(x)V

∗
1 +V2λ2(x)V

∗
2 . The unitary

equivalence class of λ1 ⊕ λ2 is well-defined, and this direct sum of endomorphisms
corresponds to the direct sum of bimodules.

An intertwiner in the setting of endomorphisms is given by

Hom(λ1, λ2) = {T ∈M | Tλ1(x) = λ2(x)T for all x ∈M}.

For two endomorphisms λ1, λ2, we set ⟨λ1, λ2⟩ = dimHom(λ1, λ2).
The relative tensor product of bimodules corresponds to composition of endo-

morphisms. The contragredient bimodule corresponds to the conjugate endomor-
phism. The conjugate endomorphism of λ is denoted by λ̄ and it is well-defined
only up to unitary equivalence. The conjugate endomorphism is also given using
the canonical endomorphism in [25, 26] arising from the modular conjugation in the
Tomita-Takesaki theory. The canonical endomorphism for a subfactor N ⊂M cor-
responds to the bimodule ML

2(M)⊗N L
2(M)M . The dual canonical endomorphism

for a subfactor N ⊂ M is an endomorphism of N corresponding to the bimodule

NMN .
An endomorphism λ of M is said to be irreducible if λ(M)′ ∩ M = C. This

corresponds to irreducibility if bimodules. The index of λ is the index [M : λ(M)].
We set the dimension of λ to be [M : λ(M)]1

2
and write d(λ) or dλ. Note that

an endomorphism with dimension 1 is an automorphism. We have d(λ1 ⊕ λ2) =
d(λ1) + d(λ2) and d(λ1λ2) = d(λ1)d(λ2).

Suppose we have a finite set {λi | i = 0, 1, . . . , n} of endomorphisms of finite
dimensions of M with λ0 being the identity automorphism. Suppose we have the
following conditions.

1. Different λi and λj are not unitarily equivalent.

2. The composition λiλj is unitarily equivalent to
⊕n

k=1mkλk, where mk is the
multiplicity of λk.

3. For each λi, its conjugate λ̄i is unitarily equivalent to some λj.

Then the set of endomorphisms of M unitarily equivalent to finite direct sums of
{λi} gives a unitary fusion category. This is a counterpart of the unitary fusion
category of bimodules. Conversely, any abstract unitary fusion category is realized
as that of endomorphisms of the type III1 Araki-Woods factor. This is a direct
consequence of Theorem 2.18.

3 Local conformal nets

We now present a precise formulation of chiral conformal field theory in the operator
algebraic framework.

11



After introducing basic definitions, we present elementary properties and repre-
sentation theory.

3.1 Definition

We now introduce the axioms for a local conformal net [21]. We say I ⊂ S1 is an
interval when it is a non-empty, connected, non-dense and open subset of S1.

Definition 3.1 We say that a family of von Neumann algebras {A(I)} parameter-
ized by intervals I ⊂ S1 acting on the same Hilbert space H is a local conformal net
when it satisfies the following conditions.

1. (Isotony) For two intervals I1 ⊂ I2, we have A(I1) ⊂ A(I2).

2. (Locality) When two intervals I1, I2 satisfy I1∩I2 = ∅, we have [A(I1),A(I2)] =
0.

3. (Möbius covariance) We have a unitary representation U of PSL(2,R) on H
such that we have U(g)A(I)U(g)∗ = A(gI) for all g ∈ PSL(2,R), where g
acts on S1 as a fractional linear transformation on R∪ {∞} and S1 ∖ {−1} is
identified with R through the Cayley transform C(z) = −i(z − 1)/(z + 1).

4. (Conformal covariance) We have a projective unitary representation, still de-
noted by U , of Diff(S1) extending the unitary representation U of PSL(2,R)
such that

U(g)A(I)U(g)∗ = A(gI), g ∈ Diff(S1),

U(g)xU(g)∗ = x, x ∈ A(I), g ∈ Diff(I ′),

where I ′ is the interior of the complement of I and Diff(I ′) is the set of diffeo-
morphisms of S1 which are the identity map on I.

5. (Positive energy condition) The generator of the restriction of U to the rotation
subgroup of S1, the conformal Hamiltonian, is positive.

6. (Existence of the vacuum vector) We have a unit vector Ω ∈ H, called the
vacuum vector, such that Ω is fixed by the representation U of PSL(2,R) and
(
∨

I⊂S1 A(I))Ω is dense in H, where
∨

I⊂S1 A(I) is the von Neumann algebra
generated by A(I)’s.

7. (Irreducibility) The von Neumann algebra
∨

I⊂S1 A(I) is B(H).

The convergence in Diff(S1) is defined by uniform convergence of all the deriva-
tives.

We say {A(I)} is a local Möbius covariant net when we drop the conformal
covariance axiom.

The name “net” originally meant that the set of spacetime regions are directed
with respect to inclusions, but now the set of intervals in S1 is not directed, so this

12



name is not appropriate, but has been widely used. Another name “pre-cosheaf”
has been used in some literatures.

If the Hilbert space is 1-dimensional and all A(I) are just C, all the axioms are
clearly satisfied, but this example is of no interest, so we exclude this from a class
of local conformal nets.

Locality comes from the fact that we have no interactions between two spacelike
separated regions in the (1 + 1)-dimensional Minkowski space. Now because of the
restriction procedure to two light rays, the notion of spacelike separation takes this
simple form of disjointness.

The positive energy condition is our counterpart to what is called the spectrum
condition in quantum field theory on the higher dimensional Minkowski space.

Irreducibility condition is equivalent to the uniqueness of the PSL(2,R)-invariant
vector up to scalar, and is also equivalent to factoriality of each algebra A(I).

It would be better to have some easy examples here, but unfortunately, there are
no easy examples one can present immediately without preparations, so we postpone
examples to a later section.

We have the following consequences from the axioms.

Theorem 3.2 (the Reeh-Schlieder theorem) For each interval I ⊂ S1, both A(I)Ω
and A(I)′Ω are dense in H, where A(I)′ is the commutant of A(I).

We can prove the following important result with the Tomita-Takesaki theory.

Theorem 3.3 (the Haag duality) We have A(I)′ = A(I ′).

Theorem 3.4 Each A(I) is isomorphic to the Araki-Woods factor of type III1.

This means that in our setting the isomorphism class of each von Neumann
algebra A(I) is unique for any interval and any local conformal net. So each A(I)
has no information on conformal field theory, and it is the relative positions of the
algebras A(I) that contain information of conformal field theory.

3.2 Superselection sectors and braiding

An important tool to study local conformal nets is their representation theory.
Each A(I) of a local conformal net acts on the Hilbert space H from the be-

ginning by definition, but consider representations of a family {A(I)} of factors on
the common Hilbert space Hπ. That is, we consider a family π of representations
πI : A(I) → B(Hπ) such that the restriction of πI2 to A(I1) is equal to πI1 for
I1 ⊂ I2. Note that Hπ does not have a vacuum vector in general. The original
identity representation on H is called the vacuum representation.

For this notion of a representation, it is easy to define an irreducible represen-
tation, the direct sum of two representations and unitary equivalence of two repre-
sentations. A unitary equivalence class of representations is called a superselection
sector or a DHR (Doplicher-Haag-Roberts) sector.

13



We would like to define a notion of a tensor product of two representations.
This is a non-trivial task, and an answer has been given in the Doplicher-Haag-
Roberts theory [7, 8], which was originally developed for quantum field theory on
the 4-dimensional Minkowski space. The Doplicher-Haag-Roberts theory adapted
to conformal field theory is given as follows. (See [11, 12].)

Take a representation π = {πI} of a local conformal net {A(I)}. Fix an arbitrary
interval I0 ⊂ S1 and consider the representation πI′0 of A(I ′0). Since A(I ′0) is a
type III factor, the identity representation A(I ′0) ↪→ B(H) and πI′0 are unitarily
equivalent. By changing the representation π within the unitary equivalence class if
necessary, we may and do assume thatH = Hπ and πI′0 is the identity representation.

Take an interval I1 with Ī1 ⊂ I0, and then take an interval I2 containing both I1
and I ′0. For x ∈ A(I1), we have πI2(xy) = πI2(yx) for any y ∈ A(I ′0). This implies
πI1(x)y = yπI1(x), and thus the image of A(I1) by πI0 is contained in A(I ′0)

′ = A(I0).
Then πI0 gives an endomorphism of A(I0). This endomorphism of a single algebra
contains all the information about the original representation, and is called a DHR
endomorphism.

We see that a composition of two DHR endomorphisms is again a DHR endo-
morphism. This defines a tensor product operation of two representations. This
also gives a tensor product of superselection sectors.

We define the dimension of a DHR endomorphism λ to be the square root of
the index [A(I0) : λI0(A(I0))] when λ is localized in I0. This is independent of I0.
The dimension is additive and multiplicative with respect to the direct sum and the
tensor product of representations.

We have a unitary tensor category consisting of endomorphisms A(I0) and this
gives the representation category of the local conformal net {A(I)}. We write
Rep(A) for this.

We next introduce the braiding operator ε±(λ, µ) on this unitary tensor category.

Theorem 3.5 Let λ, µ, ν be the localized endomorphisms of A(I0). We have the
following relations.

Ad(ε±(λ, µ)) · λ · µ = µ · λ,
ε±(λ.µ) ∈ A(I0),

ε+(λ, µ) = ε−(µ, λ)+,

ε±(λ · µ, ν) = ε±(λ, ν)λ(ε±(µ, ν)),

ε±(λ, µ · ν) = µ(ε±(λ, ν))ε±(λ, µ)),

ν(t)ε±(λ, ν) = ε±(µ, ν)t, t ∈ Hom(λ, µ),

tε±(ν, λ) = ε±(ν, µ)ν(t), t ∈ Hom(λ, µ).

The last two identities imply the following braiding fusion equations.

Corollary 3.6 Let λ, µ, ν, ρ be the localized endomorphisms of A(I0). We have the
following identities for s ∈ Hom(λ · µ, ν).

ρ(s)ε±(λ, ρ)λ(ε±(µ, ρ)) = ε±(ν, ρ)s,

sλ(ε±(ρ, µ))ε±(ρ, λ) = ε±(ρ, ν)ρ(s).
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In this way, DHR endomorphisms localized in I0 gives a unitary braided tensor
category of endomorphisms of A(I0) in the following sense.

Definition 3.7 Let C be a monoidal category with functorial isomorphisms σVW :
V ⊗W → W ⊗ V for all objects V,W in C.

For given objects V1, V2, . . . , Vn in C, we consider all expressions of the form

((Vi1 ⊗ Vi2)⊗ (1⊗ Vi3))⊗ · · · ⊗ Vin

obtained from Vi1 ⊗Vi2 ⊗· · ·⊗Vin by inserting some mathbf1’s and brackets. where
(i1, i2, . . . , in) is a permutation of {1, 2, . . . , n}. To any composition of α’s, λ’s, ρ’s,
σ’s and their inverses acting on the element in the above tensor product, we assign
an element of the braid group Bn with the standard generators bi (i = 1, 2, . . . , n−1)
satisfying bibj = bjbi for |i− j| > 1 and bibi+1bi = bi+1bibi+1 as follows. To α, λ and
ρ, we assign 1 and to σVik

Vik+1
the generator bk.

The category C is called a braided tensor category if for any two expressions
X1, X2 of the above form and any isomorphism ϕ : X1 → X2 obtained by composing
α’s, λ’s, ρ’s, σ’s and their inverses, ϕ depends only on its image in the braid group
Bn.

If the braiding is non-degenerate in some appropriate sense, we say that the
tensor category is a unitary modular tensor category. A modular tensor category
produces a 3-dimenaional topological quantum field theory [29]. We can the define
the S- and T -matrices naturally from a unitary representation of SL(2,Z), where
the dimension of the representation is the number of irreducible representations up
to unitary equivalence.

In this case, we have the celebrated Verlinde formula,

N ν
λµ =

∑
σ

Sλ,σSµ,σS
∗
ν,σ

S0,σ

, (1)

where the nonnegative integer N ν
λµ is determined by the fusion rules λ·µ =

∑
ν N

ν
λµν.

3.3 Complete rationality and modular tensor categories

A unitary braided tensor category of representations of a local conformal net is
similar to that of those of a quantum group at a root of unity. In such a represen-
tation theory, it is important to consider a case where we have only finitely many
irreducible representations up to unitary equivalence. Such finiteness is often called
rationality. This name comes from the fact that such finiteness of representation
theory gives rationality of various parameters in conformal field theory. Based on
this, we introduce the following notion.

Definition 3.8 Let {A(I)} be a local conformal net. Split the circle S1 into four
intervals and label them I1, I2, I3, I4 in the clockwise order. If the subfactor A(I1)∨
A(I3) ⊂ (A(I2) ∨ A(I4))

′ has a finite index, we say that the local conformal net
{A(I)} is completely rational.
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The reason we call this complete rationality comes from the following theorem
[23, Theorem 33, Corollary 37].

Theorem 3.9 When a local conformal net is completely rational, then it has only
finitely many irreducible representations up to unitary equivalence, and all of them
have finite dimensions. When this holds, the unitary braided tensor category of finite
dimensional representations of {A(I)} is a unitary modular tensor category and the
index of the above subfactor A(I1) ∨A(I3) ⊂ (A(I2) ∨A(I4))

′ is equal to the square
sum of the dimensions of the irreducible representations.

We have finite dimensionality of the irreducible representations and this is why
we have added the word “completely”. Note that it is difficult in general to know
all the irreducible representations, but the above theorem gives information on rep-
resentations from a subfactor defined in the vacuum representation.

We call the index of the above subfactor A(I1) ∨ A(I3) ⊂ (A(I2) ∨ A(I4))
′ the

µ-index of {A(I)}. This index is independent of the choice of I1, I2, I3, I4.
The above theorem implies that for a local conformal net, all of its irreducible

representations are unitarily equivalent to the vacuum representation if and only if
the local conformal net has µ-index 1, since the vacuum representation has dimen-
sion 1. We call such a local conformal net holomorphic. This name comes from
holomorphicity of the partition function of a full conformal field theory.

3.4 Examples and construction methods

We now discuss how to construct local conformal nets. One way to construct a
local conformal net is from a Kac-Moody Lie algebra, but from our viewpoint, it is
easier to use a loop group for a compact Lie group. Consider a connected and simply
connected Lie group, say, SU(N). Let L(SU(N)) be the set of all the C∞-maps from
S1 to SU(N). We fix a positive integer k called a level. Then we have finitely many
irreducible projective unitary representations of L(SU(N)) called positive energy
representations at level k. We have one distinguished representation, called the
vacuum representation, among them. For each interval I ⊂ S1, we denote the set of
C∞-maps from S1 to SU(N) such that the image outside the interval I is always the
identity matrix by LI(SU(N)). Then setting A(I) to be the von Neumann algebra
generated by the image of LI(SU(N)) by the vacuum representation, we have a local
conformal net {A(I)}, which is labelled as SU(N)k. (See [31], [14] for details.) A
similar construction for other Lie groups has been done. These examples correspond
to the so-called Wess-Zumino-Witten models, and this name is also often attached
to these local conformal nets.

Another construction of a local conformal net is from a lattice Λ in the Euclidean
space Rn, that is, an additive subgroup of Rn which is isomorphic to Zn and spans Rn

linearly. A lattice is called even when we have (x, y) ∈ Z and (x, x) ∈ 2Z for the inner
products of x, y ∈ Λ. One obtains a local conformal net from an even lattice Λ. This
is like a loop group construction for Rn/Λ. The local conformal nets arising from even
lattices are also completely rational. Let Λ∗ = {x ∈ Rn | (x, y) ∈ Z for all y ∈ Λ},
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the dual lattice of Λ. Then the irreducible representations of the local conformal
net arising from Λ are labelled with the elements of Λ∗/Λ and all have dimension 1.
It is holomorphic if and only if we have Λ∗ = Λ.

Another construction of a local conformal net is from a vertex operator algebra.
We see this construction in the next Chapter.

We next show methods to obtain new local conformal nets from known ones.

Example 3.10 For two local conformal nets {A(I)} and {B(I)}, we construct a
new one {A(I) ⊗ B(I)}. This is called the tensor product of local conformal nets.
Both the Hilbert space and the vacuum vector of the tensor product of local con-
formal nets are those of the tensor products. Each irreducible representation of the
tensor product local conformal net is a tensor product of two irreducible representa-
tions of the two local conformal nets, up to unitary equivalence. That is, each finite
dimensional representation of {A(I)⊗B(I)} is of the form λ⊗µ, where λ and µ are
finite dimensional representations of {A(I)} and {B(I)}, respectively. We also have
Hom(λ1 ⊗ µ1, λ2 ⊗ µ2) = Hom(λ1, λ2)⊗ Hom(µ1, µ2). This representation category
of {A(I)⊗ B(I)} is written as Rep(A)⊠ Rep(B) and called the Deligne product of
Rep(A) and Rep(B).

Example 3.11 The next construction is called the simple current extension. This is
an extension of a local conformal net {A(I)} with something similar to a semi-direct
product with a group. (See Example 4.20 for the initial appearance of this type of
construction.) Suppose some irreducible representations of {A(I)} have dimension
1 and they are closed under the conjugation and the tensor product. If they further
have all statistical phases 1, then they make a group of DHR automorphisms. An
automorphism used in this construction is called a simple current in physics litera-
tures and this is the source of the name of the construction. This method also gives
a realization of local conformal nets arising from even lattices as follows.

Example 3.12 The next one is called the orbifold construction. An automorphism
of a local conformal net {A(I)} on H is a unitary operator U on H satisfying
UA(I)U∗ = A(I) for all intervals I and UΩ = Ω. We then consider a group G
of automorphisms of a local conformal net {A(I)} and define a subnet by B(I) =
{x ∈ A(I) | UxU∗ = x, U ∈ G}. Replacing H with the closure of B(I)Ω, which is
independent of I, we obtain a new local conformal net {B(I)}. This construction
is called the orbifold construction. (See Example 4.21 for the initial appearance of
this type of construction.) We usually consider a finite group G.

Another construction is called the coset construction. Suppose we have two local
conformal nets {A(I)}, {B(I)} where the latter is a subnet of the former. Then the
family of von Neumann algebras A(I)′ ∩B(I) on the Hilbert space (A(I)′ ∩ B(I))Ω
gives a new local conformal net. (This Hilbert space is again independent of I.)
This construction is called the coset construction.

Also when we perform the coset construction for {A(I) ⊂ B(I)} with completely
rationality of {B(I)} and finiteness of the index [B(I) : A(I) ∨ (A(I)′ ∩ B(I))], we
have complete rationality of {A(I)′ ∩ B(I)}.
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4 Vertex operator algebras

We have a different axiomatization of chiral conformal field theory from a local con-
formal net and it is a theory of vertex operator algebras. It is a direct axiomatization
of Wightman fields on the circle S1. In physics literatures, certain operator-valued
distributions are called vertex operators and this is the origin of the name “vertex
operator algebra”. We explain this theory in comparison to that of local conformal
nets. We emphasize relations to local conformal nets rather than a general theory
of vertex operator algebras.

A certain amount of the theory has been devoted to a single example called the
Moonshine vertex operator algebra, so we explain the background of the Moonshine
conjecture for which it was constructed.

Among finite groups, finite simple groups are clearly fundamental. Today we
have a complete list of finite simple groups as follows.

1. Cyclic groups of prime order.

2. Alternating groups of degree 5 or higher.

3. 16 series of groups of Lie type over finite fields.

4. 26 sporadic finite simple groups.

The third class consists of matrix groups such as PSL(n,Fq). The last class
consists of exceptional structures, and the first ones were found by Mathieu in the
19th century. The largest group among the 26 groups in terms of the order is called
the Monster group, and its order is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,

which is approximately 8 × 1053. This group was first constructed in [15] as the
automorphism group of some commutative, but nonassociative algebra of 196884
dimensions. From the beginning, it has been known that the smallest dimension of
a non-trivial irreducible representation of the Monster group is 196883.

Now we turn to a different topic of the classical j-function. This is a function of
a complex number τ with Im τ > 0 given as follows.

j(τ) =
(1 + 240

∑
n>0 σ3(n)q

n)3

q
∏

n>0(1− qn)24

= q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · · ,

where σ3(n) is a sum of the cubes of the divisors of n and we set q = exp(2πiτ).
This function has modular invariance property

j(τ) = j

(
aτ + b

cτ + d

)
,

for (
a b
c d

)
∈ SL(2,Z),
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and this property and the condition that the Laurent series of q start with q−1

determine the j-function uniquely except for the constant term. The constant term
744 has been chosen for a historic reason and this has no significance, so we set
J(τ) = j(τ)− 744 and use this from now on.

McKay noticed that the first non-trivial coefficient of the Laurent expansion of
the J-function satisfies the equality 196884 = 196883 + 1, where 1 the dimension of
the trivial representation of the Monster group and 196883 is the smallest dimension
of its non-trivial representation. People suspected it is simply a coincidence, but it
has turned out that all the coefficients of the Laurent expansion of the J-function
with small exponents are linear combinations of the dimensions of irreducible repre-
sentations of the Monster group with “small” positive integer coefficients. (We have
1 as the dimension of the trivial representation, so it is trivial that any positive inte-
ger is a sum of the dimensions of irreducible representations of the Monster group,
but it is highly non-trivial that we have small multiplicities.)

Based on this, Conway-Norton [6] formulated what is called the Moonshine con-
jecture today, which has been proved by Borcherds [3].

Conjecture 4.1 1. We have some graded infinite dimensional C-vector space
V =

⊕∞
n=0 Vn (dimVn < ∞) with some natural algebraic structure and its

automorphism group is the Monster group.

2. Each element g of the Monster group acts on each Vn linearly. The Laurent
series

∞∑
n=0

(Tr g|Vn)q
n−1

arising from the trace value of the g-action on Vn is a classical function called
a Hauptmodul corresponding to a genus 0 subgroup of SL(2,R). (The case g
is the identity element is the J-function.)

The above Laurent series is called the McKay-Thompson series. The first state-
ment is vague since it does not specify the “natural algebraic structure”, but Frenkel-
Lepowsky-Meurman [13] introduced the axioms for vertex operator algebras and
constructed an example V ♮, called the Moonshine vertex operator algebra, corre-
sponding to the first statement of the above Conjecture. This was the starting point
of the entire theory.

4.1 Basic definitions

There are various, slightly different versions of the definition of vertex operator
algebras, so we fix our definition here. We follow [4].

Let V be a C-vector space. We say that a formal series a(z) =
∑

n∈Z a(n)z
−n−1

with coefficients a(n) ∈ End(V ) is a field on V , if for any b ∈ V , we have a(n)b = 0
for all sufficiently large n.

Definition 4.2 A C-vector space V is a vertex algebra if we have the following
properties.
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1. (State-field correspondence) For each a ∈ V , we have a field Y (a, z) =
∑

n∈Z a(n)z
−n−1

on V .

2. (Translation covariance) We have a linear map T ∈ End(V ) such that we have
[T, Y (a, z)] = d

dz
Y (a, z) for all a ∈ V .

3. (Existence of the vacuum vector) We have a vector Ω ∈ V with TΩ = 0,
Y (Ω, z) = idV , a(−1)Ω = a.

4. (Locality) For all a, b ∈ V , we have (z − w)N [Y (a, z), Y (b, w)] = 0 for a
sufficiently large integer N .

We then call Y (a, z) a vertex operator.

A vertex operator is an algebraic version of the Fourier expansion of an operator-
valued distribution on the circle. The state-field correspondence means that any
vector in V gives an operator-valued distribution. The locality axiom is one repre-
sentation of the idea that Y (a, z) and Y (b, w) commute for z ̸= w. (Recall that a
distribution T on R has supp T ⊂ {0} if and only if there exists a positive integer
N with xNT = 0.)

The following Borcherds identity is a consequence of the above axioms, where
a, b, c ∈ V and m,n, k ∈ Z.

∞∑
j=0

(
m
j

)
(a(n+j)b)(m+k−j)c

=
∞∑
j=0

(−1)j
(
n
j

)
a(m+n−j)b(k+j)c−

∞∑
j=0

(−1)j+n

(
n
j

)
b(n+k−j)a(m+j)c.

Definition 4.3 We say a linear subspace W ⊂ V is a vertex subalgebra if we have
Ω ∈ W and a(n)b ∈ W for all a, b ∈ W and n ∈ Z. (In this case, W is automatically
T -invariant.) We say a linear subspace J ⊂ V is an ideal if it is T -invariant and we
have a(n)b ∈ J for all a ∈ V , b ∈ J and n ∈ Z. A vertex algebra is said to be simple if
any ideal in V is either 0 or V . A (antilinear) homomorphism from a vertex algebra
V to a vertex algebra W is an (anti)linear map ϕ satisfying ϕ(a(n)b) = ϕ(a)(n)ϕ(b)
for all a, b ∈ V and n ∈ Z. We similarly define an automorphism.

If J is an ideal of V , we also have a(n)b ∈ J for all a ∈ J , b ∈ V and n ∈ Z.
We next introduce conformal symmetry in this context.

Definition 4.4 Let V be a C-vector space and L(z) =
∑

n∈Z Lnz
−n−2 be a field on

V . If the endomorphisms Ln satisfy the Virasoro algebra relations

[Lm, Ln] = (m− n)Lm+n +
(m3 −m)δm+n,0

12
c,

with central charge c ∈ C, then we say L(z) is a Virasoro field. If V is a vertex
algebra and Y (ω, z) =

∑
n∈Z Lnz

−n−2 is a Virasoro field, then we say ω ∈ V is a
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Virasoro vector. A Virasoro vector ω is called a conformal vector if L−1 = T and
L0 is diagonalizable on V . (The latter means that V is an algebraic direct sum of
the eigenspaces of L0.) Then the corresponding vertex operator Y (ω, z) is called the
energy-momentum field and L0 the conformal Hamiltonian. A vertex algebra with
a conformal vector is called a conformal vertex algebra. We then say V has central
charge c ∈ C.

Definition 4.5 A nonzero element a of a conformal vertex algebra in Ker(L0 − α)
is said to be a homogeneous element of conformal weight da = α. We then set
an = a(n+da−1) for n ∈ Z− da. For a sum a of homogeneous elements, we extend an
by linearity.

Definition 4.6 A homogeneous element a in a conformal vertex algebra V and
the corresponding field Y (a, z) are called quasi-primary if L1a = 0 and primary if
Lna = 0 for all n > 0.

Definition 4.7 We say that a conformal vertex algebra V is of CFT type if we have
Ker(L0 − α) ̸= 0 only for α ∈ {0, 1, 2, 3, . . . } and V0 = CΩ.

Definition 4.8 We say that a conformal vertex algebra V is a vertex operator
algebra if we have the following.

1. We have V =
⊕

n∈Z Vn, where Vn = Ker(L0 − n).

2. We have Vn = 0 for all sufficiently small n.

3. We have dim(Vn) <∞ for n ∈ Z.

Definition 4.9 An invariant bilinear form on a vertex operator algebra V is a
bilinear form (·, ·) on V satisfying

(Y (a, z)b, c) = (b, Y (ezL1(−z−2)L0a, z−1)c)

for all a, b, c ∈ V .

Definition 4.10 For a vertex operator algebra V with a conformal vector ω, an
automorphism g as a vertex algebra is called a VOA automorphism if we have
g(ω) = ω.

Definition 4.11 Let V be a vertex operator algebra and suppose we have a positive
definite inner product (· | ·), where this is supposed to be antilinear in the first
variable. We say the inner product is normalized if we have (Ω | Ω) = 1. We say
that the inner product is invariant if there exists a VOA antilinear automorphism θ
of V such that (θ· | ·) is an invariant bilinear form on V . We say that θ is a PCT
operator associated with the inner product.

If we have an invariant inner product, we automatically have (Lna | b) = (a |
L−nb) for a, b ∈ V and also Vn = 0 for n < 0. The PCT operator θ is unique and we
have θ2 = 1 and (θa | θb) = (b | a) for all a, b ∈ V . (See [4, Section 5.1] for details.)
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Definition 4.12 A unitary vertex operator algebra is a pair of a vertex operator
algebra and a normalized invariant inner product.

A unitary vertex operator algebra is simple if and only if we have V0 = CΩ.
For a unitary vertex operator algebra V , we write Aut(·|·)(V ) for the automor-

phism group fixing the inner product.

Definition 4.13 A unitary subalgebra W of a unitary vertex operator algebra
(V, (· | ·)) is a vertex subalgebra with θW ⊂ W and L1W ⊂ W .

4.2 Modules and modular tensor categories

We introduce a notion of a module of a vertex operator algebra, which corresponds
to a representation of a local conformal net, as follows.

Definition 4.14 LetM be a C-vector space and suppose we have a field Y M(a, z) =∑
n∈Z a

M
(n)z

−n−1, aM(n) ∈ End(M), on M for any a ∈ V , where the map a 7→ Y M(a, z)
is linear and V is a vertex algebra. We say M is a module over V if we have
Y M(Ω, z) = idM and the following Borcherds identity for a, b ∈ V , c ∈M , m,n, k ∈
Z.

∞∑
j=0

(
m
j

)
(a(n+j)b)

M
(m+k−j)c

=
∞∑
j=0

(−1)j
(
n
j

)
aM(m+n−j)b

M
(k+j)c−

∞∑
j=0

(−1)j+n

(
n
j

)
bM(n+k−j)a

M
(m+j)c.

In this section, we consider only simple vertex operator algebras of CFT type.
The fusion rules on modules have been introduced and they give the tensor

product operations on modules.
We have a natural notion of irreducible module and it is of the form M =⊕∞

n=0Mn, where every Mn is finite dimensional and L0 acts on Mn as a scalar n+h
for some constant h. The vertex operator algebra V itself is a module of V with
h = 0, and if this is the only irreducible module, then we say V is holomorphic.

We define the formal power series, the character ofM , by ch(M) =
∑∞

n=0 dim(Mn)q
n+h−c/24,

where c is the central charge. We introduce the following important notion.

Definition 4.15 If the quotient space V/{v(2)w | v, w ∈ V } is finite dimensional,
we say that the vertex operator algebra V is C2-cofinite.

It has been proved by Zhu that under the C2-cofiniteness condition and small
other conditions, we have only finitely many irreducible modules M1,M2, . . . ,Mk

up to isomorphism, their characters are absolutely convergent for |q| < 1, and the
linear span of ch(M1), ch(M2), . . . , ch(Mk) is closed under the action of SL(2,Z)
on the upper half plane through the fractional linear transformation on τ with
q = exp(2πiτ).
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Under the C2-cofiniteness assumption and small other assumptions, Huang fur-
ther showed that the S-matrix defined by the transformation τ 7→ −1/τ on the
characters satisfy the Verlinde formula (1) with respect to the fusion rules and the
tensor category of the modules is modular.

4.3 Examples and construction methods

The construction methods of local conformal nets we have explained had been known
in the context of vertex operator algebras earlier except for an extension by a Frobe-
nius algebra.

Example 4.16 We have a simple unitary vertex operator algebra L(c, 0) with cen-
tral charge c arising from a unitary representation of the Virasoro algebra with cen-
tral charge c and the lowest conformal energy 0.

Example 4.17 Let g be a simple complex Lie algebra and Vgk be the conformal
vertex algebra generated by the unitary representation of the affine Lie algebra as-
sociated with g having level k and lowest conformal energy 0. Then Vgk is a simple
unitary vertex operator algebra.

Example 4.18 Let Λ ⊂ Rn be an even lattice. That is, it is isomorphic to Zn

as an abelian group and linearly spans the entire Rn, and we have (x, y) ∈ Z and
(x, x) ∈ 2Z for all x, y ∈ Λ, where (·, ·) is the standard Euclidean inner product.
There is a general construction of a unitary vertex operator algebra from such a
lattice and we obtain VΛ from Λ. The central charge is the rank of Λ.

Example 4.19 If we have two unitary vertex operator algebras (V, (· | ·)) and
(W, (· | ·)), then the tensor product V ⊗W has a natural inner product with which
we have a unitary vertex operator algebra.

Example 4.20 For a unitary vertex operator algebra with certain modules called
simple currents satisfying some nice compatibility condition, we can extend the uni-
tary vertex operator algebra. This is called a simple current extension.

Example 4.21 For a unitary vertex operator algebra (V, (· | ·)) and G ⊂ Aut(·|·)(V ),
the fixed point subalgebra V G is a unitary vertex operator algebra. This is called an
orbifold subalgebra.

Example 4.22 Let (V, (· | ·)) be a unitary vertex operator algebra and W its subal-
gebra. Then

W c = {b ∈ V | [Y (a, z), Y (b, w)] = 0 for all a ∈ W}

is a vertex subalgebra of V . This is called a coset subalgebra. This is also called the
commutant of W in V .
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4.4 Moonshine vertex operator algebras

A rough outline of the construction of the Moonshine vertex operator algebra is as
follows. We have an exceptional even lattice in dimension 24 called the Leech lattice.
It is the unique 24-dimensional even lattice Λ with Λ = Λ∗ and having no vectors
x ∈ Λ with (x, x) = 2. We have a corresponding unitary vertex operator algebra VΛ.
The involution x → −x on Λ induces an automorphism of VΛ of order 2. Its fixed
point vertex operator subalgebra has a non-trivial simple current extension of order
2. Taking this extension is called the twisted orbifold construction and we obtain
V ♮ with this. This is the Moonshine vertex operator algebra.

The local conformal net corresponding to the Moonshine vertex operator algebra
has been constructed in [22] and its automorphism group in the operator algebraic
sense is the Monster group.

4.5 Local conformal nets and vertex operator algebras

We now consider relations between vertex operator algebras and local conformal
nets. Both are supposed to be mathematical axiomatizations of the same physical
theory, so we might expect the two sets of axioms are equivalent in the sense that
we have a canonical bijective correspondence between the mathematical objects
satisfying one set of axioms and those for the other. However, both axiomatizations
are broad and may contain some weird examples, so it is expected that we have to
impose some more conditions in order to obtain such a nice bijective correspondence.

In principle, when we have some idea, example or construction on local conformal
nets or vertex operator algebras, one can often “translate” it to the other side. For
example, the local conformal net corresponding to the Moonshine vertex operator
algebra has been constructed in [22] and its automorphism group in the operator
algebraic sense is the Monster group. Such a translation has been done on a case-by-
case basis. It is sometimes easy, sometimes difficult, and sometimes still unknown.

Here we deal with a construction of a local conformal net from a unitary vertex
operator algebra with some extra nice properties.

Definition 4.23 Let (V, (· | ·)) be a unitary vertex operator algebra. We say that
a ∈ V (or Y (a, z)) satisfies energy-bounds if we have positive integers s, k and a
constant M > 0 such that we have

∥anb∥ ≤M(|n|+ 1)s∥(L0 + 1)kb∥,

for all b ∈ V and n ∈ Z. If every a ∈ V satisfies energy-bounds, we say V is
energy-bounded.

We have the following proposition, which is [4, Proposition 6.1].

Proposition 4.24 If V is generated by a family of homogeneous elements satisfying
energy-bounds, then V is energy-bounded.
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Roughly speaking, we need norm estimates for (anb)mc from those for an(bmc)
and bm(anc). This is essentially done with the Borcherds identity.

We also have the following proposition, which is [4, Proposition 6.3].

Proposition 4.25 If V is a simple unitary vertex operator algebra generated by V1
and F ⊂ V2 where F is a family of quasi-primary θ-invariant Virasoro vectors, then
V is energy-bounded.

We have certain commutation relations for elements in V1 and F , and this implies
energy-bounds for them. Then the above Proposition follows from the previous one.

For a unitary vertex operator algebra (V, (· | ·)), define a Hilbert space H by the
completion of V with respect to the inner product (· | ·). For any a ∈ V and n ∈ Z,
we regard a(n) as a densely defined operator on H. By the invariance of the scalar
product, the operator a(n) has a densely defined adjoint, so it is closable. Suppose
V is energy-bounded and let f(z) be a smooth function on S1 = {z ∈ C | |z| = 1}
with Fourier coefficients

f̂n =

∫ π

−π

f(eiθ)e−inθ dθ

2π

for n ∈ Z. For every a ∈ V , we define the operator Y0(a, f) with domain V by

Y0(a, f)b =
∑
n∈Z

f̂nanb

for b ∈ V . The convergence follows from the energy-bounds and Y0(a, f) is a densely
defined operator. This is again closable. We denote by Y (a, f) the closure of Y0(a, f)
and call it a smeared vertex operator.

We define A(V,(·|·))(I) to be the von Neumann algebra generated by the (possibly
unbounded) operators Y (a, f) with a ∈ V , f ∈ C∞(S1) and supp f ⊂ I. (For a
family of closed operators {Ti}, we apply the polar decomposition to each Ti and
consider the von Neumann algebra generated by the partial isometry part of Ti and
the spectral projections of the self-adjoint part of Ti.) The family {A(V,(·|·))(I)}
clearly satisfies isotony. We can verify that (

∨
I A(V,(·|·))(I))Ω is dense in H. A proof

of conformal covariance is nontrivial, but can be done by studying the represen-
tations of the Virasoro algebra and Diff(S1). We also have the vacuum vector Ω
and the positive energy condition. However, locality is not clear at all from our
construction, so we make the following definition.

Definition 4.26 We say that a unitary vertex operator algebra (V, (· | ·)) is strongly
local if it is energy-bounded and we have A(V,(·|·))(I) ⊂ A(V,(·|·))(I

′)′ for all intervals
I ⊂ S1.

Difficulty in having strong locality is seen as follows. It is well-known that if
A and B are unbounded self-adjoint operators, having AB = BA on a common
core does not imply commutativity of the spectral projections of A and B. That is,
having commutativity of spectral projections from certain algebraic commutativity
relations is a nontrivial task.

A strongly local unitary vertex operator algebra produces a local conformal net
through the above procedure by definition. The following is [4, Theorem 6.9].
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Theorem 4.27 Let V be a strongly local unitary vertex operator algebra and {A(V,(·|·))(I)}
the corresponding local conformal net. Then we have Aut(A(V,(·|·))) = Aut(·|·)(V ). If
Aut(V ) is finite, then we have Aut(A(V,(·|·))) = Aut(V ).

We now have the following theorem for a criterion of strong locality [4, Theorem
8.1].

Theorem 4.28 Let V be a simple unitary energy-bounded vertex operator algebra
and F ⊂ V . Suppose F contains only quasi-primary elements, F generates V and
A(F,(·|·))(I) ⊂ A(F,(·|·))(I

′)′ for some interval I, where A(F,(·|·))(I) is defined similarly
to A(V,(·|·))(I). We then have A(F,(·|·))(I) = A(V,(·|·))(I) for all intervals I, which
implies strongly locality of {A(V,(·|·))(I)}.

From this, we can prove the following result, [4, Theorem 8.3].

Theorem 4.29 Let V be a simple unitary vertex operator algebra generated by V1∪
F where F ⊂ V2 is a family of quasi-primary θ-invariant Virasoro vectors, then V
is strongly local.

We also have the following result, [4, Theorem 7.1]

Theorem 4.30 Let V be a simple unitary strongly local vertex operator algebra and
W its subalgebra. Then W is also strongly local.

The following is [4, Corollary 8.2].

Theorem 4.31 Let V1, V2 be simple unitary strongly local vertex operator algebras.
Then V1 ⊗ V2 is also strongly local.

We list some examples of strongly local vertex operator algebras following [4].

Example 4.32 The unitary vertex algebra L(c, 0) is strongly local.

Example 4.33 Let g be a complex simple Lie algebra and let Vgk be the correspond-
ing level k unitary vertex operator algebra. Then Vgk is generated by (Vgk)1 and
hence it is strongly local.

The following is (a part of ) [4, Theorem 9.2].

Theorem 4.34 Let V be a simple unitary strongly local vertex operator algebra
and {A(V,(·|·))(I)} be the corresponding local conformal net. Then one can recover
the vertex operator algebra structure on V , which is an algebraic direct sum of the
eigenspaces of the conformal Hamiltonian, from the local conformal net {A(V,(·|·))(I)}.

This is proven by constructing the smeared vertex operators from abstract con-
siderations using only the local conformal net {A(V,(·|·))(I)}.

We remark that a relation between local conformal nets and unitary vertex oper-
ator algebras is somehow similar to that between Lie groups and Lie algebras. The
relation between loop groups and Kac-Moody Lie algebras is somewhere between
the two relations.

Recently, Gui [16] has extended the above contsruction of a local conformal
net from a vertex operator algebra to their representations satisfying some nice
assumption. This is a great achievement and further progress along this line is
expected.

26



References

[1] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones
indices (5 +

√
13)/2 and (5 +

√
17)/2, Comm. Math. Phys. 202 (1999), 1–63.

[2] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal
symmetry in two-dimensional quantum field theory, Nucl. Phys. 241 (1984),
333–380.

[3] R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, In-
vent. Math. 109 (1992), 405–444.

[4] S. Carpi, Y. Kawahigashi, R. Longo and M. Weiner, From vertex operator
algebras to conformal nets and back, Mem. Amer. Math. Soc. 254 (2018), no.
1213, vi+85 pp.

[5] A. Connes, Classification of injective factors cases II1, II∞, IIIλ, λ ̸= 1, Ann.
of Math. 104 (1976), 73–115.

[6] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math.
Soc. 11 (1979), 308–339.

[7] S. Doplicher, R. Haag and J. E. Roberts, Local observables and particle statis-
tics, I. Comm. Math. Phys. 23 (1971), 199–230.

[8] S. Doplicher, R. Haag and J. E. Roberts, Local observables and particle statis-
tics, II. Comm. Math. Phys. 35 (1974), 49–85.

[9] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math.
162 (2005) 581–642.

[10] D. E. Evans and Y. Kawahigashi, “Quantum Symmetries on Operator Alge-
bras”, Oxford University Press, Oxford (1998).

[11] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with
braid group statistics and exchange algebras, I. Comm. Math. Phys. 125
(1989), 201–226;

[12] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with
braid group statistics and exchange algebras, II. Rev. Math. Phys. Special
issue (1992), 113–157.

[13] I. Frenkel, J. Lepowsky and A. Meurman, “Vertex operator algebras and the
Monster”, Academic Press (1988).
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